import os import gradio as gr import whisper from whisper import tokenizer import time model = whisper.load_model("base") AUTO_DETECT_LANG = "Auto Detect" def transcribe(audio, state={}, delay=0.2, lang=None, translate=False): time.sleep(delay) transcription = model.transcribe( audio, language = lang if lang != "auto" else None ) state['transcription'] += transcription['text'] + " " if translate: x = whisper.load_audio(audio) x = whisper.pad_or_trim(x) mel = whisper.log_mel_spectrogram(x).to(model.device) options = whisper.DecodingOptions(task = "translation") translation = whisper.decode(model, mel, options) state['translation'] += translation.text + " " return state['transcription'], state['translation'], state, f"detected language: {transcription['language']}" title = "OpenAI's Whisper Real-time Demo" description = "A simple demo of OpenAI's [**Whisper**](https://github.com/openai/whisper) speech recognition model." delay_slider = gr.inputs.Slider(minimum=0, maximum=5, default=0.2, label="Rate of transcription (1 sec + this value)") available_languages = sorted(tokenizer.TO_LANGUAGE_CODE.keys()) available_languages = [lang.capitalize() for lang in available_languages] available_languages = [AUTO_DETECT_LANG]+available_languages lang_dropdown = gr.inputs.Dropdown(choices=available_languages, label="Language", default=AUTO_DETECT_LANG, type="value") if lang_dropdown==AUTO_DETECT_LANG: lang_dropdown=None translate_checkbox = gr.inputs.Checkbox(label="Translate to English", default=False) transcription_tb = gr.Textbox(label="Transcription", lines=10, max_lines=20) translation_tb = gr.Textbox(label="Translation", lines=10, max_lines=20) detected_lang = gr.outputs.HTML(label="Detected Language") state = gr.State({"transcription": "", "translation": ""}) gr.Interface( fn=transcribe, inputs=[ gr.Audio(source="microphone", type="filepath", streaming=True), state, delay_slider, lang_dropdown, translate_checkbox ], outputs=[ transcription_tb, translation_tb, state, detected_lang ], live=True, allow_flagging='never', title=title, description=description, ).launch( # enable_queue=True, # debug=True )