File size: 6,096 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import pytest
from openai import OpenAI
from utils import *

server = ServerPreset.tinyllama2()


@pytest.fixture(scope="module", autouse=True)
def create_server():
    global server
    server = ServerPreset.tinyllama2()


@pytest.mark.parametrize(
    "model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
    [
        ("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
        ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
    ]
)
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
    global server
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "model": model,
        "max_tokens": max_tokens,
        "messages": [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
    })
    assert res.status_code == 200
    assert res.body["usage"]["prompt_tokens"] == n_prompt
    assert res.body["usage"]["completion_tokens"] == n_predicted
    choice = res.body["choices"][0]
    assert "assistant" == choice["message"]["role"]
    assert match_regex(re_content, choice["message"]["content"])
    if truncated:
        assert choice["finish_reason"] == "length"
    else:
        assert choice["finish_reason"] == "stop"


@pytest.mark.parametrize(
    "model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
    [
        ("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
        ("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
    ]
)
def test_chat_completion_stream(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
    global server
    server.start()
    res = server.make_stream_request("POST", "/chat/completions", data={
        "model": model,
        "max_tokens": max_tokens,
        "messages": [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt},
        ],
        "stream": True,
    })
    content = ""
    for data in res:
        choice = data["choices"][0]
        if choice["finish_reason"] in ["stop", "length"]:
            assert data["usage"]["prompt_tokens"] == n_prompt
            assert data["usage"]["completion_tokens"] == n_predicted
            assert "content" not in choice["delta"]
            assert match_regex(re_content, content)
            # FIXME: not sure why this is incorrect in stream mode
            # if truncated:
            #   assert choice["finish_reason"] == "length"
            # else:
            #   assert choice["finish_reason"] == "stop"
        else:
            assert choice["finish_reason"] is None
            content += choice["delta"]["content"]


def test_chat_completion_with_openai_library():
    global server
    server.start()
    client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
    res = client.chat.completions.create(
        model="gpt-3.5-turbo-instruct",
        messages=[
            {"role": "system", "content": "Book"},
            {"role": "user", "content": "What is the best book"},
        ],
        max_tokens=8,
        seed=42,
        temperature=0.8,
    )
    print(res)
    assert res.choices[0].finish_reason == "stop"
    assert res.choices[0].message.content is not None
    assert match_regex("(Suddenly)+", res.choices[0].message.content)


@pytest.mark.parametrize("response_format,n_predicted,re_content", [
    ({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
    ({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
    ({"type": "json_object"}, 10, "(\\{|John)+"),
    ({"type": "sound"}, 0, None),
    # invalid response format (expected to fail)
    ({"type": "json_object", "schema": 123}, 0, None),
    ({"type": "json_object", "schema": {"type": 123}}, 0, None),
    ({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),
])
def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
    global server
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "max_tokens": n_predicted,
        "messages": [
            {"role": "system", "content": "You are a coding assistant."},
            {"role": "user", "content": "Write an example"},
        ],
        "response_format": response_format,
    })
    if re_content is not None:
        assert res.status_code == 200
        choice = res.body["choices"][0]
        assert match_regex(re_content, choice["message"]["content"])
    else:
        assert res.status_code != 200
        assert "error" in res.body


@pytest.mark.parametrize("messages", [
    None,
    "string",
    [123],
    [{}],
    [{"role": 123}],
    [{"role": "system", "content": 123}],
    # [{"content": "hello"}], # TODO: should not be a valid case
    [{"role": "system", "content": "test"}, {}],
])
def test_invalid_chat_completion_req(messages):
    global server
    server.start()
    res = server.make_request("POST", "/chat/completions", data={
        "messages": messages,
    })
    assert res.status_code == 400 or res.status_code == 500
    assert "error" in res.body


def test_chat_completion_with_timings_per_token():
    global server
    server.start()
    res = server.make_stream_request("POST", "/chat/completions", data={
        "max_tokens": 10,
        "messages": [{"role": "user", "content": "test"}],
        "stream": True,
        "timings_per_token": True,
    })
    for data in res:
        assert "timings" in data
        assert "prompt_per_second" in data["timings"]
        assert "predicted_per_second" in data["timings"]
        assert "predicted_n" in data["timings"]
        assert data["timings"]["predicted_n"] <= 10