File size: 22,588 Bytes
b664585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
#pragma once
#include "ggml.h"
#include "ggml-cuda.h"
#include <cstdint>
#include <memory>
#if defined(GGML_USE_HIP)
#define GGML_COMMON_DECL_HIP
#define GGML_COMMON_IMPL_HIP
#else
#define GGML_COMMON_DECL_CUDA
#define GGML_COMMON_IMPL_CUDA
#if defined(GGML_USE_MUSA)
#define GGML_COMMON_DECL_MUSA
#define GGML_COMMON_IMPL_MUSA
#endif
#endif
#include "ggml-common.h"
#include <cstdio>
#include <array>
#include <cassert>
#include <cfloat>
#include <string>
#include <vector>
#if defined(GGML_USE_HIP)
#include "vendors/hip.h"
#elif defined(GGML_USE_MUSA)
#include "vendors/musa.h"
#else
#include "vendors/cuda.h"
#endif // defined(GGML_USE_HIP)
#define STRINGIZE_IMPL(...) #__VA_ARGS__
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
#define WARP_SIZE 32
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
#define CC_PASCAL 600
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA 700
#define CC_TURING 750
#define CC_AMPERE 800
#define CC_OFFSET_AMD 1000000
// GCN/CNDA, wave size is 64
#define CC_GCN4 (CC_OFFSET_AMD + 803) // Tonga, Fiji, Polaris, minimum for fast fp16
#define CC_VEGA (CC_OFFSET_AMD + 900) // Vega56/64, minimum for fp16 dual issue
#define CC_VEGA20 (CC_OFFSET_AMD + 906) // MI50/Radeon VII, minimum for dp4a
#define CC_CDNA (CC_OFFSET_AMD + 908) // MI100, minimum for MFMA, acc registers
#define CC_CDNA2 (CC_OFFSET_AMD + 910) // MI210, minimum acc register renameing
#define CC_CDNA3 (CC_OFFSET_AMD + 942) // MI300
// RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32
#define CC_RDNA1 (CC_OFFSET_AMD + 1010) // RX 5000
#define CC_RDNA2 (CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
#define CC_RDNA3 (CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA
#define CC_QY1 210
#define CC_QY2 220
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define GGML_CUDA_MAX_STREAMS 8
[[noreturn]]
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
#define CUDA_CHECK_GEN(err, success, error_fn) \
do { \
auto err_ = (err); \
if (err_ != (success)) { \
ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
} \
} while (0)
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
#if CUDART_VERSION >= 12000 || defined(GGML_USE_MUSA)
static const char * cublas_get_error_str(const cublasStatus_t err) {
return cublasGetStatusString(err);
}
#else
static const char * cublas_get_error_str(const cublasStatus_t err) {
switch (err) {
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
default: return "unknown error";
}
}
#endif // CUDART_VERSION >= 12000
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
#if !defined(GGML_USE_HIP)
static const char * cu_get_error_str(CUresult err) {
const char * err_str;
cuGetErrorString(err, &err_str);
return err_str;
}
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
#endif
#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
#else
#define GGML_CUDA_ASSUME(x)
#endif // CUDART_VERSION >= 11100
#ifdef GGML_CUDA_F16
typedef half dfloat; // dequantize float
typedef half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif // GGML_CUDA_F16
#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
#define FP16_AVAILABLE
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
#define FP16_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
#define INT8_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
#define FLASH_ATTN_AVAILABLE
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
static constexpr bool fast_fp16_available(const int cc) {
return cc >= CC_PASCAL && cc != 610;
}
static constexpr bool fp16_mma_available(const int cc) {
return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
}
static constexpr bool int8_mma_available(const int cc) {
return cc < CC_OFFSET_AMD && cc >= CC_TURING;
}
[[noreturn]]
static __device__ void no_device_code(
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
file_name, line, function_name, arch);
GGML_UNUSED(arch_list);
#else
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
file_name, line, function_name, arch, arch_list);
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
__trap();
GGML_UNUSED(no_device_code); // suppress unused function warning
}
#ifdef __CUDA_ARCH__
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
#else
#define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
#endif // __CUDA_ARCH__
static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
}
return x;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
}
static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, offset, 32);
}
return x;
}
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, offset, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, offset, 32);
}
return a;
}
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
#ifdef FP16_AVAILABLE
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
const half2 a_other = __shfl_xor_sync(0xffffffff, a, offset, 32);
reinterpret_cast<half&>(a.x) += __low2half(a_other);
reinterpret_cast<half&>(a.y) += __high2half(a_other);
}
return a;
#else
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, 32));
}
return a;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#else
NO_DEVICE_CODE;
return a;
#endif // FP16_AVAILABLE
}
static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
}
return x;
}
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
#ifdef FP16_AVAILABLE
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
return __float2half(fmaxf(__half2float(a), __half2float(b)));
#else
return __hmax(a, b);
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
#else
NO_DEVICE_CODE;
GGML_UNUSED(b);
return a;
#endif // FP16_AVAILABLE
}
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
#if CUDART_VERSION >= CUDART_HMAX
return __hmax2(a, b);
#else
half2 ret;
reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
return ret;
#endif // CUDART_VERSION >= CUDART_HMAX
#else
GGML_UNUSED(a);
GGML_UNUSED(b);
NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
}
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#pragma unroll
for (int offset = 16; offset > 0; offset >>= 1) {
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
}
return x;
#else
GGML_UNUSED(x);
NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
}
#if CUDART_VERSION < CUDART_HMASK
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
return mask_low | mask_high;
}
#endif // CUDART_VERSION < CUDART_HMASK
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
int tmp1;
int tmp2;
asm("\n \
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
v_add3_u32 %0, %1, %2, %0 \n \
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
v_add3_u32 %0, %1, %2, %0 \n \
"
: "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
: "v"(a), "v"(b)
);
#else
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
#endif
return c;
#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if __CUDA_ARCH__ >= MIN_CC_DP4A
return __dp4a(a, b, c);
#else // __CUDA_ARCH__ >= MIN_CC_DP4A
const int8_t * a8 = (const int8_t *) &a;
const int8_t * b8 = (const int8_t *) &b;
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}
// TODO: move to ggml-common.h
static constexpr __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
static __device__ __forceinline__ float get_alibi_slope(
const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
) {
if (max_bias <= 0.0f) {
return 1.0f;
}
const float base = h < n_head_log2 ? m0 : m1;
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
return powf(base, exph);
}
template <ggml_type type>
struct ggml_cuda_type_traits;
template<>
struct ggml_cuda_type_traits<GGML_TYPE_F16> {
static constexpr int qk = 1;
static constexpr int qr = 1;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> {
static constexpr int qk = QK4_0;
static constexpr int qr = QR4_0;
static constexpr int qi = QI4_0;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> {
static constexpr int qk = QK4_1;
static constexpr int qr = QR4_1;
static constexpr int qi = QI4_1;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> {
static constexpr int qk = QK5_0;
static constexpr int qr = QR5_0;
static constexpr int qi = QI5_0;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> {
static constexpr int qk = QK5_1;
static constexpr int qr = QR5_1;
static constexpr int qi = QI5_1;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
static constexpr int qk = QK8_0;
static constexpr int qr = QR8_0;
static constexpr int qi = QI8_0;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
static constexpr int qk = QK_K;
static constexpr int qr = QR2_K;
static constexpr int qi = QI2_K;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> {
static constexpr int qk = QK_K;
static constexpr int qr = QR3_K;
static constexpr int qi = QI3_K;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> {
static constexpr int qk = QK_K;
static constexpr int qr = QR4_K;
static constexpr int qi = QI4_K;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> {
static constexpr int qk = QK_K;
static constexpr int qr = QR5_K;
static constexpr int qi = QI5_K;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> {
static constexpr int qk = QK_K;
static constexpr int qr = QR6_K;
static constexpr int qi = QI6_K;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> {
static constexpr int qk = QK_K;
static constexpr int qr = QR2_XXS;
static constexpr int qi = QI2_XXS;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> {
static constexpr int qk = QK_K;
static constexpr int qr = QR2_XS;
static constexpr int qi = QI2_XS;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> {
static constexpr int qk = QK_K;
static constexpr int qr = QR2_S;
static constexpr int qi = QI2_S;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> {
static constexpr int qk = QK_K;
static constexpr int qr = QR3_XXS;
static constexpr int qi = QI3_XXS;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
static constexpr int qk = QK_K;
static constexpr int qr = QR1_S;
static constexpr int qi = QI1_S;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
static constexpr int qk = QK_K;
static constexpr int qr = QR1_M;
static constexpr int qi = QI1_M;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
static constexpr int qk = QK4_NL;
static constexpr int qr = QR4_NL;
static constexpr int qi = QI4_NL;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> {
static constexpr int qk = QK_K;
static constexpr int qr = QR4_XS;
static constexpr int qi = QI4_XS;
};
template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
static constexpr int qk = QK_K;
static constexpr int qr = QR3_S;
static constexpr int qi = QI3_S;
};
//////////////////////
struct ggml_cuda_device_info {
int device_count;
struct cuda_device_info {
int cc; // compute capability
int nsm; // number of streaming multiprocessors
size_t smpb; // max. shared memory per block
size_t smpbo; // max. shared memory per block (with opt-in)
bool vmm; // virtual memory support
size_t vmm_granularity; // granularity of virtual memory
size_t total_vram;
};
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
};
const ggml_cuda_device_info & ggml_cuda_info();
void ggml_cuda_set_device(int device);
int ggml_cuda_get_device();
struct ggml_cuda_pool {
virtual ~ggml_cuda_pool() = default;
virtual void * alloc(size_t size, size_t * actual_size) = 0;
virtual void free(void * ptr, size_t size) = 0;
};
template<typename T>
struct ggml_cuda_pool_alloc {
ggml_cuda_pool * pool = nullptr;
T * ptr = nullptr;
size_t actual_size = 0;
ggml_cuda_pool_alloc() = default;
explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
}
ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
alloc(size);
}
~ggml_cuda_pool_alloc() {
if (ptr != nullptr) {
pool->free(ptr, actual_size);
}
}
// size is in number of elements
T * alloc(size_t size) {
GGML_ASSERT(pool != nullptr);
GGML_ASSERT(ptr == nullptr);
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
return ptr;
}
T * alloc(ggml_cuda_pool & pool, size_t size) {
this->pool = &pool;
return alloc(size);
}
T * get() {
return ptr;
}
ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
};
// backend interface
struct ggml_tensor_extra_gpu {
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
};
#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
#define USE_CUDA_GRAPH
#endif
struct ggml_graph_node_properties {
void * node_address;
ggml_op node_op;
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
void * src_address[GGML_MAX_SRC];
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
};
struct ggml_cuda_graph {
#ifdef USE_CUDA_GRAPH
~ggml_cuda_graph() {
if (instance != nullptr) {
CUDA_CHECK(cudaGraphExecDestroy(instance));
}
if (graph != nullptr) {
CUDA_CHECK(cudaGraphDestroy(graph));
}
}
cudaGraph_t graph = nullptr;
cudaGraphExec_t instance = nullptr;
size_t num_nodes = 0;
std::vector<cudaGraphNode_t> nodes;
std::vector<cudaKernelNodeParams> params;
bool disable_due_to_gpu_arch = false;
bool disable_due_to_too_many_updates = false;
bool disable_due_to_failed_graph_capture = false;
int number_consecutive_updates = 0;
std::vector<ggml_graph_node_properties> ggml_graph_properties;
std::vector<char **> updated_kernel_arg;
#endif
};
struct ggml_backend_cuda_context {
int device;
std::string name;
cudaEvent_t copy_event = nullptr;
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
std::unique_ptr<ggml_cuda_graph> cuda_graph;
explicit ggml_backend_cuda_context(int device) :
device(device),
name(GGML_CUDA_NAME + std::to_string(device)) {
}
~ggml_backend_cuda_context() {
if (copy_event != nullptr) {
CUDA_CHECK(cudaEventDestroy(copy_event));
}
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
if (streams[i][j] != nullptr) {
CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
}
}
if (cublas_handles[i] != nullptr) {
CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
}
}
}
cudaStream_t stream(int device, int stream) {
if (streams[device][stream] == nullptr) {
ggml_cuda_set_device(device);
CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
}
return streams[device][stream];
}
cudaStream_t stream() {
return stream(device, 0);
}
cublasHandle_t cublas_handle(int device) {
if (cublas_handles[device] == nullptr) {
ggml_cuda_set_device(device);
CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
}
return cublas_handles[device];
}
cublasHandle_t cublas_handle() {
return cublas_handle(device);
}
// pool
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
ggml_cuda_pool & pool(int device) {
if (pools[device] == nullptr) {
pools[device] = new_pool_for_device(device);
}
return *pools[device];
}
ggml_cuda_pool & pool() {
return pool(device);
}
};
|