File size: 22,588 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#pragma once

#include "ggml.h"
#include "ggml-cuda.h"

#include <cstdint>
#include <memory>

#if defined(GGML_USE_HIP)
#define GGML_COMMON_DECL_HIP
#define GGML_COMMON_IMPL_HIP
#else
#define GGML_COMMON_DECL_CUDA
#define GGML_COMMON_IMPL_CUDA
#if defined(GGML_USE_MUSA)
#define GGML_COMMON_DECL_MUSA
#define GGML_COMMON_IMPL_MUSA
#endif
#endif
#include "ggml-common.h"

#include <cstdio>
#include <array>
#include <cassert>
#include <cfloat>
#include <string>
#include <vector>

#if defined(GGML_USE_HIP)
#include "vendors/hip.h"
#elif defined(GGML_USE_MUSA)
#include "vendors/musa.h"
#else
#include "vendors/cuda.h"
#endif // defined(GGML_USE_HIP)

#define STRINGIZE_IMPL(...) #__VA_ARGS__
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)

#define WARP_SIZE 32
#define CUDART_HMAX   11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
#define CUDART_HMASK  12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons

#define CC_PASCAL     600
#define MIN_CC_DP4A   610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
#define CC_VOLTA      700
#define CC_TURING     750
#define CC_AMPERE     800
#define CC_OFFSET_AMD 1000000

// GCN/CNDA, wave size is 64
#define CC_GCN4       (CC_OFFSET_AMD + 803)  // Tonga, Fiji, Polaris, minimum for fast fp16
#define CC_VEGA       (CC_OFFSET_AMD + 900)  // Vega56/64, minimum for fp16 dual issue
#define CC_VEGA20     (CC_OFFSET_AMD + 906)  // MI50/Radeon VII, minimum for dp4a
#define CC_CDNA       (CC_OFFSET_AMD + 908)  // MI100, minimum for MFMA, acc registers
#define CC_CDNA2      (CC_OFFSET_AMD + 910)  // MI210, minimum acc register renameing
#define CC_CDNA3      (CC_OFFSET_AMD + 942)  // MI300

// RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32
#define CC_RDNA1      (CC_OFFSET_AMD + 1010) // RX 5000
#define CC_RDNA2      (CC_OFFSET_AMD + 1030) // RX 6000, minimum for dp4a
#define CC_RDNA3      (CC_OFFSET_AMD + 1100) // RX 7000, minimum for WMMA

#define CC_QY1        210
#define CC_QY2        220

#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

#define GGML_CUDA_MAX_STREAMS 8

[[noreturn]]
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);

#define CUDA_CHECK_GEN(err, success, error_fn)                                      \
     do {                                                                           \
        auto err_ = (err);                                                          \
        if (err_ != (success)) {                                                    \
            ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_));    \
        }                                                                           \
    } while (0)

#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)

#if CUDART_VERSION >= 12000 || defined(GGML_USE_MUSA)
    static const char * cublas_get_error_str(const cublasStatus_t err) {
        return cublasGetStatusString(err);
    }
#else
    static const char * cublas_get_error_str(const cublasStatus_t err) {
        switch (err) {
            case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
            case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
            case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
            case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
            case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
            case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
            case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
            case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
            case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
            default: return "unknown error";
        }
    }
#endif // CUDART_VERSION >= 12000

#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)

#if !defined(GGML_USE_HIP)
static const char * cu_get_error_str(CUresult err) {
    const char * err_str;
    cuGetErrorString(err, &err_str);
    return err_str;
}
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
#endif

#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
#else
#define GGML_CUDA_ASSUME(x)
#endif // CUDART_VERSION >= 11100

#ifdef GGML_CUDA_F16
typedef half dfloat; // dequantize float
typedef half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
#endif // GGML_CUDA_F16

#if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
#define FP16_AVAILABLE
#endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL

#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610

#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
#define FP16_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA

#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING
#define INT8_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_TURING

#if !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)
#define FLASH_ATTN_AVAILABLE
#endif // !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ <= CC_QY1)

static constexpr bool fast_fp16_available(const int cc) {
    return cc >= CC_PASCAL && cc != 610;
}

static constexpr bool fp16_mma_available(const int cc) {
    return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
}

static constexpr bool int8_mma_available(const int cc) {
    return cc < CC_OFFSET_AMD && cc >= CC_TURING;
}

[[noreturn]]
static __device__ void no_device_code(
    const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {

#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
    printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
           file_name, line, function_name, arch);
    GGML_UNUSED(arch_list);
#else
    printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
           file_name, line, function_name, arch, arch_list);
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
    __trap();

    GGML_UNUSED(no_device_code); // suppress unused function warning
}

#ifdef __CUDA_ARCH__
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
#else
#define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
#endif // __CUDA_ARCH__

static __device__ __forceinline__ int warp_reduce_sum(int x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
    return __reduce_add_sync(0xffffffff, x);
#else
#pragma unroll
    for (int offset = 16; offset > 0; offset >>= 1) {
        x += __shfl_xor_sync(0xffffffff, x, offset, 32);
    }
    return x;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE
}

static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
    for (int offset = 16; offset > 0; offset >>= 1) {
        x += __shfl_xor_sync(0xffffffff, x, offset, 32);
    }
    return x;
}

static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
    for (int offset = 16; offset > 0; offset >>= 1) {
        a.x += __shfl_xor_sync(0xffffffff, a.x, offset, 32);
        a.y += __shfl_xor_sync(0xffffffff, a.y, offset, 32);
    }
    return a;
}

static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
#ifdef FP16_AVAILABLE

#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#pragma unroll
    for (int offset = 16; offset > 0; offset >>= 1) {
        const half2 a_other = __shfl_xor_sync(0xffffffff, a, offset, 32);
        reinterpret_cast<half&>(a.x) +=  __low2half(a_other);
        reinterpret_cast<half&>(a.y) += __high2half(a_other);
    }
    return a;
#else
#pragma unroll
    for (int offset = 16; offset > 0; offset >>= 1) {
        a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, 32));
    }
    return a;
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)

#else
    NO_DEVICE_CODE;
    return a;
#endif // FP16_AVAILABLE
}

static __device__ __forceinline__ float warp_reduce_max(float x) {
#pragma unroll
    for (int offset = 16; offset > 0; offset >>= 1) {
        x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
    }
    return x;
}

static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
#ifdef FP16_AVAILABLE

#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
    return __float2half(fmaxf(__half2float(a), __half2float(b)));
#else
    return __hmax(a, b);
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX

#else
   NO_DEVICE_CODE;
   GGML_UNUSED(b);
   return a;
#endif // FP16_AVAILABLE
}

static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))

#if CUDART_VERSION >= CUDART_HMAX
    return __hmax2(a, b);
#else
    half2 ret;
    reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a),  __low2float(b)));
    reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
    return ret;
#endif // CUDART_VERSION >= CUDART_HMAX

#else
    GGML_UNUSED(a);
    GGML_UNUSED(b);
    NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
}

static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
#pragma unroll
   for (int offset = 16; offset > 0; offset >>= 1) {
       x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, 32));
   }
   return x;
#else
   GGML_UNUSED(x);
   NO_DEVICE_CODE;
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
}

#if CUDART_VERSION < CUDART_HMASK
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
    const uint32_t mask_low  = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
    const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
    return mask_low | mask_high;
}
#endif // CUDART_VERSION < CUDART_HMASK

static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(RDNA2)
    c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3)
    c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(__gfx1010__) || defined(__gfx900__)
    int tmp1;
    int tmp2;
    asm("\n \
        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
        v_add3_u32 %0, %1, %2, %0 \n \
        v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
        v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
        v_add3_u32 %0, %1, %2, %0 \n \
        "
        : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
        : "v"(a), "v"(b)
    );
#else
    const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
    const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
    c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
#endif
    return c;

#else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)

#if __CUDA_ARCH__ >= MIN_CC_DP4A
    return __dp4a(a, b, c);
#else // __CUDA_ARCH__ >= MIN_CC_DP4A
    const int8_t * a8 = (const int8_t *) &a;
    const int8_t * b8 = (const int8_t *) &b;
    return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A

#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}

// TODO: move to ggml-common.h
static constexpr __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};

typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);

static __device__ __forceinline__ float get_alibi_slope(
    const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
) {
    if (max_bias <= 0.0f) {
        return 1.0f;
    }
    const float base = h < n_head_log2 ? m0 : m1;
    const int   exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;

    return powf(base, exph);
}

template <ggml_type type>
struct ggml_cuda_type_traits;

template<>
struct ggml_cuda_type_traits<GGML_TYPE_F16> {
    static constexpr int qk = 1;
    static constexpr int qr = 1;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> {
    static constexpr int qk = QK4_0;
    static constexpr int qr = QR4_0;
    static constexpr int qi = QI4_0;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> {
    static constexpr int qk = QK4_1;
    static constexpr int qr = QR4_1;
    static constexpr int qi = QI4_1;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> {
    static constexpr int qk = QK5_0;
    static constexpr int qr = QR5_0;
    static constexpr int qi = QI5_0;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> {
    static constexpr int qk = QK5_1;
    static constexpr int qr = QR5_1;
    static constexpr int qi = QI5_1;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
    static constexpr int qk = QK8_0;
    static constexpr int qr = QR8_0;
    static constexpr int qi = QI8_0;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR2_K;
    static constexpr int qi = QI2_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR3_K;
    static constexpr int qi = QI3_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR4_K;
    static constexpr int qi = QI4_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR5_K;
    static constexpr int qi = QI5_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR6_K;
    static constexpr int qi = QI6_K;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR2_XXS;
    static constexpr int qi = QI2_XXS;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR2_XS;
    static constexpr int qi = QI2_XS;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR2_S;
    static constexpr int qi = QI2_S;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR3_XXS;
    static constexpr int qi = QI3_XXS;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR1_S;
    static constexpr int qi = QI1_S;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR1_M;
    static constexpr int qi = QI1_M;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
    static constexpr int qk = QK4_NL;
    static constexpr int qr = QR4_NL;
    static constexpr int qi = QI4_NL;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR4_XS;
    static constexpr int qi = QI4_XS;
};

template<>
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
    static constexpr int qk = QK_K;
    static constexpr int qr = QR3_S;
    static constexpr int qi = QI3_S;
};

//////////////////////

struct ggml_cuda_device_info {
    int device_count;

    struct cuda_device_info {
        int     cc;                 // compute capability
        int     nsm;                // number of streaming multiprocessors
        size_t  smpb;               // max. shared memory per block
        size_t  smpbo;              // max. shared memory per block (with opt-in)
        bool    vmm;                // virtual memory support
        size_t  vmm_granularity;    // granularity of virtual memory
        size_t  total_vram;
    };

    cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};

    std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
};

const ggml_cuda_device_info & ggml_cuda_info();

void ggml_cuda_set_device(int device);
int ggml_cuda_get_device();

struct ggml_cuda_pool {
    virtual ~ggml_cuda_pool() = default;

    virtual void * alloc(size_t size, size_t * actual_size) = 0;
    virtual void free(void * ptr, size_t size) = 0;
};

template<typename T>
struct ggml_cuda_pool_alloc {
    ggml_cuda_pool * pool = nullptr;
    T * ptr = nullptr;
    size_t actual_size = 0;

    ggml_cuda_pool_alloc() = default;

    explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
    }

    ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
        alloc(size);
    }

    ~ggml_cuda_pool_alloc() {
        if (ptr != nullptr) {
            pool->free(ptr, actual_size);
        }
    }

    // size is in number of elements
    T * alloc(size_t size) {
        GGML_ASSERT(pool != nullptr);
        GGML_ASSERT(ptr == nullptr);
        ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
        return ptr;
    }

    T * alloc(ggml_cuda_pool & pool, size_t size) {
        this->pool = &pool;
        return alloc(size);
    }

    T * get() {
        return ptr;
    }

    ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
    ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
    ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
    ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
};


// backend interface

struct ggml_tensor_extra_gpu {
    void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
    cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
};


#if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
#define USE_CUDA_GRAPH
#endif

struct ggml_graph_node_properties {
    void * node_address;
    ggml_op node_op;
    int64_t ne[GGML_MAX_DIMS];
    size_t nb[GGML_MAX_DIMS];
    void * src_address[GGML_MAX_SRC];
    int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
};

struct ggml_cuda_graph {
#ifdef USE_CUDA_GRAPH
    ~ggml_cuda_graph() {
        if (instance != nullptr) {
            CUDA_CHECK(cudaGraphExecDestroy(instance));
        }
        if (graph != nullptr) {
            CUDA_CHECK(cudaGraphDestroy(graph));
        }
    }
    cudaGraph_t graph = nullptr;
    cudaGraphExec_t instance = nullptr;
    size_t num_nodes = 0;
    std::vector<cudaGraphNode_t> nodes;
    std::vector<cudaKernelNodeParams> params;
    bool disable_due_to_gpu_arch = false;
    bool disable_due_to_too_many_updates = false;
    bool disable_due_to_failed_graph_capture = false;
    int number_consecutive_updates = 0;
    std::vector<ggml_graph_node_properties> ggml_graph_properties;
    std::vector<char **> updated_kernel_arg;
#endif
};

struct ggml_backend_cuda_context {
    int device;
    std::string name;
    cudaEvent_t copy_event = nullptr;

    cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
    cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};

    std::unique_ptr<ggml_cuda_graph> cuda_graph;

    explicit ggml_backend_cuda_context(int device) :
        device(device),
        name(GGML_CUDA_NAME + std::to_string(device)) {
    }

    ~ggml_backend_cuda_context() {
        if (copy_event != nullptr) {
            CUDA_CHECK(cudaEventDestroy(copy_event));
        }
        for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
            for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
                if (streams[i][j] != nullptr) {
                    CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
                }
            }
            if (cublas_handles[i] != nullptr) {
                CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
            }
        }
    }

    cudaStream_t stream(int device, int stream) {
        if (streams[device][stream] == nullptr) {
            ggml_cuda_set_device(device);
            CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
        }
        return streams[device][stream];
    }

    cudaStream_t stream() {
        return stream(device, 0);
    }

    cublasHandle_t cublas_handle(int device) {
        if (cublas_handles[device] == nullptr) {
            ggml_cuda_set_device(device);
            CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
            CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
        }
        return cublas_handles[device];
    }

    cublasHandle_t cublas_handle() {
        return cublas_handle(device);
    }

    // pool
    std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];

    static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);

    ggml_cuda_pool & pool(int device) {
        if (pools[device] == nullptr) {
            pools[device] = new_pool_for_device(device);
        }
        return *pools[device];
    }

    ggml_cuda_pool & pool() {
        return pool(device);
    }
};