Mat17892's picture
llamacpp
b664585 verified
// Copyright 2024 Mozilla Foundation
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
// _ _ ___ _ _ ___
// | |_(_)_ _ _ _| _ ) | /_\ / __|
// | _| | ' \ || | _ \ |__ / _ \\__ \.
// \__|_|_||_\_, |___/____/_/ \_\___/
// |__/
//
// BASIC LINEAR ALGEBRA SUBPROGRAMS
//
//
// This file implements multithreaded CPU matrix multiplication for the
// common contiguous use case C = Aᵀ * B. These kernels are designed to
// have excellent performance[1] for matrices that fit in the CPU cache
// without imposing any overhead such as cache filling or malloc calls.
//
// This implementation does not guarantee any upper bound with rounding
// errors, which grow along with k. Our goal's to maximally exploit the
// hardware for performance, and then use whatever resources remain for
// improving numerical accuracy.
//
// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wpedantic"
#pragma GCC diagnostic ignored "-Wignored-attributes"
#endif
#include "sgemm.h"
#include "ggml-impl.h"
#include "ggml-cpu-impl.h"
#include "ggml-quants.h"
#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
#else
#define NOINLINE __attribute__((__noinline__))
#endif
#if defined(__ARM_NEON) || defined(__AVX512F__)
#define VECTOR_REGISTERS 32
#else
#define VECTOR_REGISTERS 16
#endif
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
namespace {
inline float unhalf(ggml_fp16_t d) {
return GGML_FP16_TO_FP32(d);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED ARITHMETIC OPERATIONS
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
#endif // __SSE__
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
#endif // __AVX__
#if defined(__AVX512F__)
inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
#endif // __AVX512F__
#if defined(__ARM_NEON)
inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
#endif // __ARM_NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#if defined(__MMA__)
typedef vector unsigned char vec_t;
typedef __vector_quad acc_t;
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED FUSED MULTIPLY ADD
/**
* Computes a * b + c.
*/
template <typename T, typename U>
inline U madd(T a, T b, U c) {
return add(mul(a, b), c);
}
#if defined(__FMA__)
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m256 madd(__m256 a, __m256 b, __m256 c) {
return _mm256_fmadd_ps(a, b, c);
}
#endif
#if defined(__AVX512F__)
template <>
inline __m512 madd(__m512 a, __m512 b, __m512 c) {
return _mm512_fmadd_ps(a, b, c);
}
#endif
#endif
#if defined(__ARM_FEATURE_FMA)
template <>
inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
return vfmaq_f32(c, b, a);
}
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
template <>
inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
return vfmaq_f16(c, b, a);
}
#endif
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED HORIZONTAL SUM
#if defined(__ARM_NEON)
inline float hsum(float32x4_t x) {
return vaddvq_f32(x);
}
#endif // __ARM_NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
inline float hsum(float16x8_t x) {
return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
vcvt_f32_f16(vget_high_f16(x))));
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline float hsum(__m128 x) {
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
x = _mm_add_ps(x, _mm_movehl_ps(x, x));
x = _mm_add_ss(x, _mm_movehdup_ps(x));
#else
__m128 t;
t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
x = _mm_add_ps(x, t);
t = _mm_movehl_ps(t, x);
x = _mm_add_ss(x, t);
#endif
return _mm_cvtss_f32(x);
}
#endif
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline float hsum(__m256 x) {
return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
_mm256_castps256_ps128(x)));
}
#endif // __AVX__
#if defined(__AVX512F__)
inline float hsum(__m512 x) {
return _mm512_reduce_add_ps(x);
}
#endif // __AVX512F__
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED MEMORY LOADING
template <typename T, typename U> T load(const U *);
#if defined(__ARM_NEON)
template <> inline float32x4_t load(const float *p) {
return vld1q_f32(p);
}
#if !defined(_MSC_VER)
template <> inline float16x8_t load(const ggml_fp16_t *p) {
return vld1q_f16((const float16_t *)p);
}
template <> inline float32x4_t load(const ggml_fp16_t *p) {
return vcvt_f32_f16(vld1_f16((const float16_t *)p));
}
#endif // _MSC_VER
#endif // __ARM_NEON
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <> inline __m128 load(const float *p) {
return _mm_loadu_ps(p);
}
#endif // __SSE__
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <> inline __m256 load(const float *p) {
return _mm256_loadu_ps(p);
}
#endif // __AVX__
#if defined(__F16C__)
template <> inline __m256 load(const ggml_fp16_t *p) {
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
}
#endif // __F16C__
#if defined(__AVX512F__)
template <> inline __m512 load(const float *p) {
return _mm512_loadu_ps(p);
}
template <> inline __m512 load(const ggml_fp16_t *p) {
return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
}
#endif // __AVX512F__
////////////////////////////////////////////////////////////////////////////////////////////////////
// CONSTANTS
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
class tinyBLAS {
public:
tinyBLAS(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
#if VECTOR_REGISTERS == 32
case 0x55:
mc = 5;
nc = 5;
gemm<5, 5>(m0, m, n0, n);
break;
case 0x45:
mc = 4;
nc = 5;
gemm<4, 5>(m0, m, n0, n);
break;
case 0x54:
mc = 5;
nc = 4;
gemm<5, 4>(m0, m, n0, n);
break;
case 0x44:
mc = 4;
nc = 4;
gemm<4, 4>(m0, m, n0, n);
break;
case 0x53:
mc = 5;
nc = 3;
gemm<5, 3>(m0, m, n0, n);
break;
case 0x35:
mc = 3;
nc = 5;
gemm<3, 5>(m0, m, n0, n);
break;
case 0x43:
mc = 4;
nc = 3;
gemm<4, 3>(m0, m, n0, n);
break;
#else
case 0x55:
case 0x54:
case 0x53:
case 0x45:
case 0x44:
case 0x43:
mc = 4;
nc = 3;
gemm<4, 3>(m0, m, n0, n);
break;
case 0x35:
#endif
case 0x34:
mc = 3;
nc = 4;
gemm<3, 4>(m0, m, n0, n);
break;
case 0x52:
mc = 5;
nc = 2;
gemm<5, 2>(m0, m, n0, n);
break;
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3>(m0, m, n0, n);
break;
case 0x25:
mc = 2;
nc = 5;
gemm<2, 5>(m0, m, n0, n);
break;
case 0x42:
mc = 4;
nc = 2;
gemm<4, 2>(m0, m, n0, n);
break;
case 0x24:
mc = 2;
nc = 4;
gemm<2, 4>(m0, m, n0, n);
break;
case 0x32:
mc = 3;
nc = 2;
gemm<3, 2>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm<2, 3>(m0, m, n0, n);
break;
case 0x51:
mc = 5;
nc = 1;
gemm<5, 1>(m0, m, n0, n);
break;
case 0x41:
mc = 4;
nc = 1;
gemm<4, 1>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2>(m0, m, n0, n);
break;
case 0x15:
mc = 1;
nc = 5;
gemm<1, 5>(m0, m, n0, n);
break;
case 0x14:
mc = 1;
nc = 4;
gemm<1, 4>(m0, m, n0, n);
break;
case 0x31:
mc = 3;
nc = 1;
gemm<3, 1>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm<1, 3>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1>(m0, m, n0, n);
break;
default:
return;
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
D Cv[RN][RM] = {};
for (int64_t l = 0; l < k; l += KN)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l),
load<V>(B + ldb * (jj + j) + l),
Cv[j][i]);
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
}
const TA *const A;
const TB *const B;
TC *const C;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
//////////////////////////////////////////////////////////////////////////////////////////
// QUANT ZERO MATRIX MULTIPLICATION
#if defined(__ARM_FEATURE_DOTPROD)
template <typename TA>
class tinyBLAS_Q0_ARM {
public:
tinyBLAS_Q0_ARM(int64_t k,
const TA *A, int64_t lda,
const block_q8_0 *B, int64_t ldb,
float *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) {
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3>(m0, m, n0, n);
break;
case 0x32:
mc = 3;
nc = 2;
gemm<3, 2>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm<2, 3>(m0, m, n0, n);
break;
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2>(m0, m, n0, n);
break;
case 0x31:
mc = 3;
nc = 1;
gemm<3, 1>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm<1, 3>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1>(m0, m, n0, n);
break;
default:
return;
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
float32x4_t Cv[RN][RM] = {};
for (int64_t l = 0; l < k; ++l)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
Cv[j][i] = vmlaq_n_f32(Cv[j][i],
vcvtq_f32_s32(vdotq_s32(
vdotq_s32(vdupq_n_s32(0),
load_lo(A + lda * (ii + i) + l),
load_lo(B + ldb * (jj + j) + l)),
load_hi(A + lda * (ii + i) + l),
load_hi(B + ldb * (jj + j) + l))),
unhalf(A[lda * (ii + i) + l].d) *
unhalf(B[ldb * (jj + j) + l].d));
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
}
inline int8x16_t load_lo(const block_q8_0 *b) {
return vld1q_s8(b->qs);
}
inline int8x16_t load_hi(const block_q8_0 *b) {
return vld1q_s8(b->qs + 16);
}
inline int8x16_t load_lo(const block_q4_0 *b) {
return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
vdupq_n_u8(0x0f))),
vdupq_n_s8(0x8));
}
inline int8x16_t load_hi(const block_q4_0 *b) {
return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
vdupq_n_s8(0x8));
}
const TA *const A;
const block_q8_0 *const B;
float *const C;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
#endif // __ARM_FEATURE_DOTPROD
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
template <typename TA, typename TB, typename TC>
class tinyBLAS_Q0_AVX {
public:
tinyBLAS_Q0_AVX(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) {
#if VECTOR_REGISTERS == 32
case 0x44:
mc = 4;
nc = 4;
#if defined(__AVX2__) && defined(__F16C__)
gemm4xN<4>(m0, m, n0, n);
#else
gemm<4, 4>(m0, m, n0, n);
#endif
break;
case 0x43:
mc = 4;
nc = 3;
#if defined(__AVX2__) && defined(__F16C__)
gemm4xN<3>(m0, m, n0, n);
#else
gemm<4, 3>(m0, m, n0, n);
#endif
break;
case 0x34:
mc = 3;
nc = 4;
#if defined(__AVX2__) && defined(__F16C__)
gemmMx4<3>(m0, m, n0, n);
#else
gemm<3, 4>(m0, m, n0, n);
#endif
break;
case 0x33:
mc = 3;
nc = 3;
gemm<3, 3>(m0, m, n0, n);
break;
case 0x42:
mc = 4;
nc = 2;
#if defined(__AVX2__) && defined(__F16C__)
gemm4xN<2>(m0, m, n0, n);
#else
gemm<4, 2>(m0, m, n0, n);
#endif
break;
case 0x24:
mc = 2;
nc = 4;
#if defined(__AVX2__) && defined(__F16C__)
gemmMx4<2>(m0, m, n0, n);
#else
gemm<2, 4>(m0, m, n0, n);
#endif
break;
#else
case 0x44:
case 0x43:
case 0x42:
mc = 4;
nc = 2;
#if defined(__AVX2__) && defined(__F16C__)
gemm4xN<2>(m0, m, n0, n);
#else
gemm<4, 2>(m0, m, n0, n);
#endif
break;
case 0x34:
case 0x24:
mc = 2;
nc = 4;
#if defined(__AVX2__) && defined(__F16C__)
gemmMx4<2>(m0, m, n0, n);
#else
gemm<2, 4>(m0, m, n0, n);
#endif
break;
case 0x33:
#endif
case 0x32:
mc = 3;
nc = 2;
gemm<3, 2>(m0, m, n0, n);
break;
case 0x23:
mc = 2;
nc = 3;
gemm<2, 3>(m0, m, n0, n);
break;
case 0x41:
mc = 4;
nc = 1;
#if defined(__AVX2__) && defined(__F16C__)
gemm4xN<1>(m0, m, n0, n);
#else
gemm<4, 1>(m0, m, n0, n);
#endif
break;
case 0x22:
mc = 2;
nc = 2;
gemm<2, 2>(m0, m, n0, n);
break;
case 0x14:
mc = 1;
nc = 4;
#if defined(__AVX2__) && defined(__F16C__)
gemmMx4<1>(m0, m, n0, n);
#else
gemm<1, 4>(m0, m, n0, n);
#endif
break;
case 0x31:
mc = 3;
nc = 1;
gemm<3, 1>(m0, m, n0, n);
break;
case 0x13:
mc = 1;
nc = 3;
gemm<1, 3>(m0, m, n0, n);
break;
case 0x21:
mc = 2;
nc = 1;
gemm<2, 1>(m0, m, n0, n);
break;
case 0x12:
mc = 1;
nc = 2;
gemm<1, 2>(m0, m, n0, n);
break;
case 0x11:
mc = 1;
nc = 1;
gemm<1, 1>(m0, m, n0, n);
break;
default:
return;
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
#if defined(__AVX2__) && defined(__F16C__)
// Templated functions for gemm of dimensions 4xN
template <int RN>
NOINLINE void gemm4xN(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / 4;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * 4;
int64_t jj = n0 + job % xtiles * RN;
__m256 Cv[RN][4] = {};
for (int64_t l = 0; l < k; ++l) {
uint64_t a_delta = ((uint64_t)A[lda * (ii + 3) + l].d << 48) | ((uint64_t)A[lda * (ii + 2) + l].d << 32) | ((uint64_t)A[lda * (ii + 1) + l].d << 16) | (A[lda * (ii + 0) + l].d);
// Convert delta values for four blocks to float values
__m128 da = _mm_cvtph_ps(_mm_set_epi64x(0, a_delta));
__m256i avec0 = load(A + lda * (ii + 0) + l);
__m256i avec1 = load(A + lda * (ii + 1) + l);
__m256i avec2 = load(A + lda * (ii + 2) + l);
__m256i avec3 = load(A + lda * (ii + 3) + l);
for (int64_t j = 0; j < RN; ++j) {
__m128 db = _mm_set1_ps(unhalf(B[ldb * (jj + j) + l].d));
// Computation of product of delta values for four blocks and replicate it across 256 bit lane
__m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
// Computation of dot product and multiplication with appropriate delta value products
Cv[j][0] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
updot(_mm256_sign_epi8(avec0, avec0),
_mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec0)),
Cv[j][0]);
Cv[j][1] = madd(_mm256_shuffle_ps(dvec, dvec, 85),
updot(_mm256_sign_epi8(avec1, avec1),
_mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec1)),
Cv[j][1]);
Cv[j][2] = madd(_mm256_shuffle_ps(dvec, dvec, 170),
updot(_mm256_sign_epi8(avec2, avec2),
_mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec2)),
Cv[j][2]);
Cv[j][3] = madd(_mm256_shuffle_ps(dvec, dvec, 255),
updot(_mm256_sign_epi8(avec3, avec3),
_mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec3)),
Cv[j][3]);
}
}
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < 4; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
}
// Templated functions for gemm of dimensions Mx4
template <int RM>
NOINLINE void gemmMx4(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / 4;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * 4;
__m256 Cv[4][RM] = {};
for (int64_t l = 0; l < k; ++l) {
uint64_t b_delta = ((uint64_t)B[ldb * (jj + 3) + l].d << 48) | ((uint64_t)B[ldb * (jj + 2) + l].d << 32) | ((uint64_t)B[ldb * (jj + 1) + l].d << 16) | (B[ldb * (jj + 0) + l].d);
// Convert delta values for four blocks to float values
__m128 db = _mm_cvtph_ps(_mm_set_epi64x(0, b_delta));
__m256i bvec0 = load(B + ldb * (jj + 0) + l);
__m256i bvec1 = load(B + ldb * (jj + 1) + l);
__m256i bvec2 = load(B + ldb * (jj + 2) + l);
__m256i bvec3 = load(B + ldb * (jj + 3) + l);
for (int64_t i = 0; i < RM; ++i) {
__m128 da = _mm_set1_ps(unhalf((A[lda * (ii + i) + l].d)));
// Computation of product of delta values for four blocks and replicate it across 256 bit lane
__m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
// Computation of dot product and multiplication with appropriate delta value products
Cv[0][i] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
load(A + lda * (ii + i) + l)),
_mm256_sign_epi8(bvec0, load(A + lda * (ii + i) + l))),
Cv[0][i]);
Cv[1][i] = madd(_mm256_shuffle_ps(dvec, dvec, 85),
updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
load(A + lda * (ii + i) + l)),
_mm256_sign_epi8(bvec1, load(A + lda * (ii + i) + l))),
Cv[1][i]);
Cv[2][i] = madd(_mm256_shuffle_ps(dvec, dvec, 170),
updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
load(A + lda * (ii + i) + l)),
_mm256_sign_epi8(bvec2, load(A + lda * (ii + i) + l))),
Cv[2][i]);
Cv[3][i] = madd(_mm256_shuffle_ps(dvec, dvec, 255),
updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
load(A + lda * (ii + i) + l)),
_mm256_sign_epi8(bvec3, load(A + lda * (ii + i) + l))),
Cv[3][i]);
}
}
for (int64_t j = 0; j < 4; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
}
#endif
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
__m256 Cv[RN][RM] = {};
for (int64_t l = 0; l < k; ++l)
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i) {
#if defined(__AVX2__)
__m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
load(A + lda * (ii + i) + l)),
_mm256_sign_epi8(load(B + ldb * (jj + j) + l),
load(A + lda * (ii + i) + l)));
#else
__m128i ali0 = load0(A + lda * (ii + i) + l);
__m128i ali1 = load1(A + lda * (ii + i) + l);
__m128i blj0 = load0(B + ldb * (jj + j) + l);
__m128i blj1 = load1(B + ldb * (jj + j) + l);
__m128i sepAA0 = _mm_sign_epi8(ali0, ali0);
__m128i sepAA1 = _mm_sign_epi8(ali1, ali1);
__m128i sepBA0 = _mm_sign_epi8(blj0, ali0);
__m128i sepBA1 = _mm_sign_epi8(blj1, ali1);
// updot
const __m128i oneFill = _mm_set1_epi16(1);
__m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0);
__m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1);
__m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0)));
#endif
Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
unhalf(B[ldb * (jj + j) + l].d)),
udTmp,
Cv[j][i]);
}
for (int64_t j = 0; j < RN; ++j)
for (int64_t i = 0; i < RM; ++i)
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
}
}
inline __m256i load(const block_q8_0 *b) {
return _mm256_loadu_si256((const __m256i *)b->qs);
}
inline __m128i load0(const block_q8_0 *b) {
return _mm_loadu_si128((const __m128i *)b->qs);
}
inline __m128i load1(const block_q8_0 *b) {
return _mm_loadu_si128(((const __m128i *)b->qs) + 1);
}
inline __m256i load(const block_q4_0 *b) {
return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
}
inline __m128i load0(const block_q4_0 *b) {
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8));
}
inline __m128i load1(const block_q4_0 *b) {
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8));
}
inline __m256i load(const block_q5_0 *b) {
return _mm256_or_si256(denibble(b->qs), bittobyte(b->qh));
}
inline __m128i load0(const block_q5_0* b) {
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
uint32_t x32;
memcpy(&x32, b->qh, sizeof(uint32_t));
__m128i qxl = _mm_and_si128(_mm_set1_epi8(15), x);
__m128i bytesl = _mm_cmpeq_epi8(_mm_set1_epi64x(-1),
_mm_or_si128(_mm_set1_epi64x(0x7fbfdfeff7fbfdfe),
_mm_shuffle_epi8(_mm_set1_epi32(x32),
_mm_set_epi64x(0x0101010101010101, 0x0000000000000000))));
bytesl = _mm_andnot_si128(bytesl, _mm_set1_epi8((char)0xF0));
return _mm_or_si128(qxl, bytesl);
}
inline __m128i load1(const block_q5_0* b) {
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
uint32_t x32;
memcpy(&x32, b->qh, sizeof(uint32_t));
__m128i qxh = _mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4));
__m128i bytesh = _mm_cmpeq_epi8(_mm_set1_epi64x(-1),
_mm_or_si128(_mm_set1_epi64x(0x7fbfdfeff7fbfdfe),
_mm_shuffle_epi8(_mm_set1_epi32(x32),
_mm_set_epi64x(0x0303030303030303, 0x0202020202020202))));
bytesh = _mm_andnot_si128(bytesh, _mm_set1_epi8((char)0xF0));
return _mm_or_si128(qxh, bytesh);
}
inline __m256i load(const block_iq4_nl *b) {
return MM256_SET_M128I(load1(b), load0(b));
}
inline __m128i load0(const block_iq4_nl *b) {
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
return _mm_shuffle_epi8(iq4nlt, _mm_and_si128(_mm_set1_epi8(15), x));
}
inline __m128i load1(const block_iq4_nl *b) {
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
return _mm_shuffle_epi8(iq4nlt, _mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)));
}
inline __m256 updot(__m256i u, __m256i s) {
__m256i res;
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
#else
res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
#endif
return _mm256_cvtepi32_ps(res);
}
static inline __m256i denibble(const uint8_t *p) {
__m128i x = _mm_loadu_si128((const __m128i *)p);
return _mm256_and_si256(_mm256_set1_epi8(15),
_mm256_insertf128_si256(_mm256_castsi128_si256(x),
_mm_srli_epi16(x, 4), 1));
}
static inline __m256i bittobyte(const uint8_t *p) {
uint32_t x32;
memcpy(&x32, p, sizeof(uint32_t));
__m256i bytes = _mm256_cmpeq_epi8(_mm256_set1_epi64x(-1),
_mm256_or_si256(_mm256_set1_epi64x(0x7fbfdfeff7fbfdfe),
_mm256_shuffle_epi8(_mm256_set1_epi32(x32),
_mm256_set_epi64x(0x0303030303030303, 0x0202020202020202,
0x0101010101010101, 0x0000000000000000))));
return _mm256_andnot_si256(bytes, _mm256_set1_epi8((char)0xF0));
}
const TA *const A;
const TB *const B;
TC *const C;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
#endif // __AVX__
//PPC Implementation
#if defined(__MMA__)
#define SAVE_ACC(ACC, ii, jj) \
__builtin_mma_disassemble_acc(vec_C, ACC); \
for (int I = 0; I < 4; I++) { \
for (int J = 0; J < 4; J++) { \
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J); \
} \
} \
template <typename TA, typename TB, typename TC>
class tinyBLAS_PPC {
public:
tinyBLAS_PPC(int64_t k,
const TA *A, int64_t lda,
const TB *B, int64_t ldb,
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
void (tinyBLAS_PPC::*kernel)(int64_t, int64_t);
void READ_BLOCK(const float* a, int64_t lda, int rows, int cols, float* vec) {
int64_t i, j;
float *aoffset = NULL, *boffset = NULL;
float *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
float *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
aoffset = const_cast<float*>(a);
boffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset5 = aoffset4 + lda;
aoffset6 = aoffset5 + lda;
aoffset7 = aoffset6 + lda;
aoffset8 = aoffset7 + lda;
aoffset += 8 * lda;
i = (cols >> 3);
if (i > 0) {
__vector_pair C1, C2, C3, C4, C5, C6, C7, C8;
vector float c1[2], c2[2], c3[2], c4[2], c5[2], c6[2], c7[2], c8[2];
vector float t1, t2, t3, t4, t5, t6, t7, t8;
do {
C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1);
C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2);
C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3);
C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4);
C5 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset5);
C6 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset6);
C7 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset7);
C8 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset8);
__builtin_vsx_disassemble_pair(c1, &C1);
__builtin_vsx_disassemble_pair(c2, &C2);
__builtin_vsx_disassemble_pair(c3, &C3);
__builtin_vsx_disassemble_pair(c4, &C4);
__builtin_vsx_disassemble_pair(c5, &C5);
__builtin_vsx_disassemble_pair(c6, &C6);
__builtin_vsx_disassemble_pair(c7, &C7);
__builtin_vsx_disassemble_pair(c8, &C8);
t1 = vec_mergeh(c1[0], c2[0]);
t2 = vec_mergeh(c3[0], c4[0]);
t3 = vec_mergeh(c5[0], c6[0]);
t4 = vec_mergeh(c7[0], c8[0]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, boffset);
vec_xst(t6, 0, boffset+4);
vec_xst(t7, 0, boffset+8);
vec_xst(t8, 0, boffset+12);
t1 = vec_mergel(c1[0], c2[0]);
t2 = vec_mergel(c3[0], c4[0]);
t3 = vec_mergel(c5[0], c6[0]);
t4 = vec_mergel(c7[0], c8[0]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, boffset+16);
vec_xst(t6, 0, boffset+20);
vec_xst(t7, 0, boffset+24);
vec_xst(t8, 0, boffset+28);
t1 = vec_mergeh(c1[1], c2[1]);
t2 = vec_mergeh(c3[1], c4[1]);
t3 = vec_mergeh(c5[1], c6[1]);
t4 = vec_mergeh(c7[1], c8[1]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, boffset+32);
vec_xst(t6, 0, boffset+36);
vec_xst(t7, 0, boffset+40);
vec_xst(t8, 0, boffset+44);
t1 = vec_mergel(c1[1], c2[1]);
t2 = vec_mergel(c3[1], c4[1]);
t3 = vec_mergel(c5[1], c6[1]);
t4 = vec_mergel(c7[1], c8[1]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, boffset+48);
vec_xst(t6, 0, boffset+52);
vec_xst(t7, 0, boffset+56);
vec_xst(t8, 0, boffset+60);
aoffset1 += 8*lda;
aoffset2 += 8*lda;
aoffset3 += 8*lda;
aoffset4 += 8*lda;
boffset += 64;
i--;
} while(i > 0);
}
if (cols & 4) {
vector float c1, c2, c3, c4, c5, c6, c7, c8;
vector float t1, t2, t3, t4, t5, t6, t7, t8;
c1 = vec_xl(0, aoffset1);
c2 = vec_xl(0, aoffset2);
c3 = vec_xl(0, aoffset3);
c4 = vec_xl(0, aoffset4);
c5 = vec_xl(0, aoffset5);
c6 = vec_xl(0, aoffset6);
c7 = vec_xl(0, aoffset7);
c8 = vec_xl(0, aoffset8);
t1 = vec_mergeh(c1, c2);
t2 = vec_mergeh(c3, c4);
t3 = vec_mergeh(c5, c6);
t4 = vec_mergeh(c7, c8);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, boffset);
vec_xst(t6, 0, boffset+4);
vec_xst(t7, 0, boffset+8);
vec_xst(t8, 0, boffset+12);
t1 = vec_mergel(c1, c2);
t2 = vec_mergel(c3, c4);
t3 = vec_mergel(c5, c6);
t4 = vec_mergel(c7, c8);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t3, t4, 0);
t7 = vec_xxpermdi(t1, t2, 3);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, boffset+16);
vec_xst(t6, 0, boffset+20);
vec_xst(t7, 0, boffset+24);
vec_xst(t8, 0, boffset+28);
}
j--;
} while(j > 0);
}
if (rows & 4) {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset += 4 * lda;
i = (cols >> 3);
if (i > 0) {
__vector_pair C1, C2, C3, C4;
vector float c1[2], c2[2], c3[2], c4[2];
vector float t1, t2, t3, t4, t5, t6, t7, t8;
do {
C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1);
C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2);
C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3);
C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4);
__builtin_vsx_disassemble_pair(c1, &C1);
__builtin_vsx_disassemble_pair(c2, &C2);
__builtin_vsx_disassemble_pair(c3, &C3);
__builtin_vsx_disassemble_pair(c4, &C4);
t1 = vec_mergeh(c1[0], c2[0]);
t2 = vec_mergeh(c3[0], c4[0]);
t3 = vec_mergel(c1[0], c2[0]);
t4 = vec_mergel(c3[0], c4[0]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t1, t2, 3);
t7 = vec_xxpermdi(t3, t4, 0);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, boffset);
vec_xst(t6, 0, boffset+4);
vec_xst(t7, 0, boffset+8);
vec_xst(t8, 0, boffset+12);
t1 = vec_mergeh(c1[1], c2[1]);
t2 = vec_mergeh(c3[1], c4[1]);
t3 = vec_mergel(c1[1], c2[1]);
t4 = vec_mergel(c3[1], c4[1]);
t5 = vec_xxpermdi(t1, t2, 0);
t6 = vec_xxpermdi(t1, t2, 3);
t7 = vec_xxpermdi(t3, t4, 0);
t8 = vec_xxpermdi(t3, t4, 3);
vec_xst(t5, 0, boffset+16);
vec_xst(t6, 0, boffset+20);
vec_xst(t7, 0, boffset+24);
vec_xst(t8, 0, boffset+28);
aoffset1 += 8*lda;
aoffset2 += 8*lda;
aoffset3 += 8*lda;
aoffset4 += 8*lda;
boffset += 32;
i--;
} while(i > 0);
}
if (cols & 4) {
vector float c1, c2, c3, c4;
vector float t1, t2, t3, t4;
c1 = vec_xl(0, aoffset1);
c2 = vec_xl(0, aoffset2);
c3 = vec_xl(0, aoffset3);
c4 = vec_xl(0, aoffset4);
t1 = vec_mergeh(c1, c2);
t2 = vec_mergeh(c3, c4);
t3 = vec_xxpermdi(t1, t2, 0);
t4 = vec_xxpermdi(t1, t2, 3);
vec_xst(t3, 0, boffset);
vec_xst(t4, 0, boffset+4);
t1 = vec_mergel(c1, c2);
t2 = vec_mergel(c3, c4);
t3 = vec_xxpermdi(t1, t2, 0);
t4 = vec_xxpermdi(t1, t2, 3);
vec_xst(t3, 0, boffset+8);
vec_xst(t4, 0, boffset+12);
}
}
if (rows & 3) {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
if (cols & 4) {
vector float c1, c2, c3, c4 = {0};
vector float t1, t2, t3, t4;
c1 = vec_xl(0, aoffset1);
c2 = vec_xl(0, aoffset2);
c3 = vec_xl(0, aoffset3);
t1 = vec_mergeh(c1, c2);
t2 = vec_mergeh(c3, c4);
t3 = vec_xxpermdi(t1, t2, 0);
t4 = vec_xxpermdi(t1, t2, 3);
vec_xst(t3, 0, boffset);
vec_xst(t4, 0, boffset+4);
t1 = vec_mergel(c1, c2);
t2 = vec_mergel(c3, c4);
t3 = vec_xxpermdi(t1, t2, 0);
t4 = vec_xxpermdi(t1, t2, 3);
vec_xst(t3, 0, boffset+8);
vec_xst(t4, 0, boffset+12);
}
}
}
void KERNEL_4x4(int64_t ii, int64_t jj) {
vec_t vec_A[4], vec_B[4], vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
for (int l = 0; l < k; l+=4) {
READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]);
}
SAVE_ACC(&acc_0, ii, jj);
}
void KERNEL_4x8(int64_t ii, int64_t jj) {
vec_t vec_A[4], vec_B[8], vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int64_t l = 0; l < k; l+=4) {
READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 4, (float*)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]);
__builtin_mma_xvf32gerpp(&acc_1, vec_A[1], (vec_t)vec_B[3]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[2], (vec_t)vec_B[4]);
__builtin_mma_xvf32gerpp(&acc_1, vec_A[2], (vec_t)vec_B[5]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[3], (vec_t)vec_B[6]);
__builtin_mma_xvf32gerpp(&acc_1, vec_A[3], (vec_t)vec_B[7]);
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
}
void KERNEL_8x4(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[4], vec_C[4];
acc_t acc_0, acc_1;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
for (int64_t l = 0; l < k; l+=4) {
READ_BLOCK(A+(ii*lda)+l, lda, 8, 4, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[3], vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[4], vec_B[2]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[5], vec_B[2]);
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[6], vec_B[3]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[7], vec_B[3]);
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii+4, jj);
}
void KERNEL_8x8(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[16], vec_C[4];
acc_t acc_0, acc_1, acc_2, acc_3;
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
__builtin_mma_xxsetaccz(&acc_2);
__builtin_mma_xxsetaccz(&acc_3);
for (int l = 0; l < k; l+=8) {
READ_BLOCK(A+(ii*lda)+l, lda, 8, 8, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 8, (float*)vec_B);
for(int x = 0; x < 16; x+=2) {
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x+1]);
__builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x+1], vec_B[x]);
__builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x+1], vec_B[x+1]);
}
}
SAVE_ACC(&acc_0, ii, jj);
SAVE_ACC(&acc_1, ii, jj+4);
SAVE_ACC(&acc_2, ii+4, jj);
SAVE_ACC(&acc_3, ii+4, jj+4);
}
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t mc, nc, mp, np;
int m_rem = MIN(m - m0, 16);
int n_rem = MIN(n - n0, 16);
if (m_rem >= 16 && n_rem >= 8) {
mc = 8;
nc = 8;
gemm<8,8>(m0, m, n0, n);
} else if(m_rem >= 8 && n_rem >= 16) {
mc = 8;
nc = 8;
gemm<8,8>(m0, m, n0, n);
} else if (m_rem >= 8 && n_rem >= 8) {
mc = 8;
nc = 8;
gemm<8,8>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 8) {
mc = 4;
nc = 8;
gemm<4,8>(m0, m, n0, n);
} else if (m_rem >= 8 && n_rem >= 4) {
mc = 8;
nc = 4;
gemm<8,4>(m0, m, n0, n);
} else if (m_rem >= 4 && n_rem >= 4) {
mc = 4;
nc = 4;
gemm<4,4>(m0, m, n0, n);
} else if ((m_rem < 4) && (n_rem > 4)) {
nc = 4;
switch(m_rem) {
case 1:
mc = 1;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 2:
mc = 2;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 3:
mc = 3;
gemm_small(m0, m, n0, n, mc, nc);
break;
default:
return;
}
} else if ((m_rem > 4) && (n_rem < 4)) {
mc = 4;
switch(n_rem) {
case 1:
nc = 1;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 2:
nc = 2;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 3:
nc = 3;
gemm_small(m0, m, n0, n, mc, nc);
break;
default:
return;
}
} else {
switch((m_rem << 4) | n_rem) {
case 0x43:
mc = 4;
nc = 3;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x42:
mc = 4;
nc = 2;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x41:
mc = 4;
nc = 1;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x34:
mc = 3;
nc = 4;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x33:
mc = 3;
nc = 3;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x32:
mc = 3;
nc = 2;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x31:
mc = 3;
nc = 1;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x24:
mc = 2;
nc = 4;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x23:
mc = 2;
nc = 3;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x22:
mc = 2;
nc = 2;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x21:
mc = 2;
nc = 1;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x14:
mc = 1;
nc = 4;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x13:
mc = 1;
nc = 3;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x12:
mc = 1;
nc = 2;
gemm_small(m0, m, n0, n, mc, nc);
break;
case 0x11:
mc = 1;
nc = 1;
gemm_small(m0, m, n0, n, mc, nc);
break;
default:
return;
}
}
mp = m0 + (m - m0) / mc * mc;
np = n0 + (n - n0) / nc * nc;
mnpack(mp, m, n0, np);
mnpack(m0, m, np, n);
}
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
vec_t vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
vec_t vec_A[4], vec_B[4];
for (int l=0; l<k; l+=4) {
if (RN >= 4 && RM == 1) {
float* a = const_cast<float*>(A+(ii)*lda+l);
READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
vec_A[0] = (vec_t)vec_xl(0,a);
vec_A[1] = (vec_t)vec_splats(*((float*)&vec_A+1));
vec_A[2] = (vec_t)vec_splats(*((float*)&vec_A+2));
vec_A[3] = (vec_t)vec_splats(*((float*)&vec_A+3));
} else {
READ_BLOCK(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A);
READ_BLOCK(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B);
}
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
__builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]);
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J);
}
}
}
}
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (RM == 4 && RN == 4) {
kernel = &tinyBLAS_PPC::KERNEL_4x4;
} else if (RM == 4 && RN == 8) {
kernel = &tinyBLAS_PPC::KERNEL_4x8;
} else if (RM == 8 && RN == 4) {
kernel = &tinyBLAS_PPC::KERNEL_8x4;
} else if (RM == 8 && RN == 8) {
kernel = &tinyBLAS_PPC::KERNEL_8x8;
}
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
(this->*kernel)(ii, jj);
}
}
const TA *const A;
const TB *const B;
TC *C;
TA *At;
TB *Bt;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
#endif
} // namespace
/**
* Performs optimized matrix multiplication on CPU.
*
* This subroutine may compute C = Aᵀ * B with column major ordering.
* Despite its name, this isn't a generalized implementation. Work is
* only performed when a handwritten kernel is written and available.
* Otherwise the caller should fall back to a general matmul routine.
*
* For example, for single-threaded single-precision GEMM you can say
*
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
* 0, 1,
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
*
* @param m is rows in `A` and `C`
* @param n is cols in `B` and `C`
* @param k is cols in `A` and rows in `B`
* @param A is first input matrix (always transposed)
* @param lda is row stride of `A`
* @param B is second input matrix (never transposed)
* @param ldb is row stride of `B`
* @param C is input/output array of output matrices
* @param ldc is row stride of `C`
* @param ith is thread id (must be less than `nth`)
* @param nth is number of threads (must be greater than zero)
* @param Atype is GGML data type of `A`
* @param Btype is GGML data type of `B`
* @param Ctype is GGML data type of `C`
* @return true if this function was able to service the matmul request
*/
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
assert(m >= 0);
assert(n >= 0);
assert(k >= 0);
assert(lda >= k);
assert(ldb >= k);
assert(ldc >= m);
assert(nth > 0);
assert(ith < nth);
// only enable sgemm for prompt processing
if (n < 2)
return false;
if (Ctype != GGML_TYPE_F32)
return false;
switch (Atype) {
case GGML_TYPE_F32: {
if (Btype != GGML_TYPE_F32)
return false;
#if defined(__AVX512F__)
if (k % 16)
return false;
tinyBLAS<16, __m512, __m512, float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__AVX__) || defined(__AVX2__)
if (k % 8)
return false;
tinyBLAS<8, __m256, __m256, float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_NEON)
if (n < 4)
return false;
if (k % 4)
return false;
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__MMA__)
if (k % 8)
return false;
tinyBLAS_PPC<float, float, float> tb{
k, (const float *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif
}
case GGML_TYPE_F16: {
#if defined(__AVX512F__)
if (k % 16)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
if (k % 8)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
if (n < 8)
return false;
if (k % 8)
return false;
if (Btype != GGML_TYPE_F16)
return false;
tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const ggml_fp16_t *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
if (k % 4)
return false;
if (Btype != GGML_TYPE_F32)
return false;
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
k, (const ggml_fp16_t *)A, lda,
(const float *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif
}
case GGML_TYPE_Q8_0: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{
k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<block_q8_0> tb{
k, (const block_q8_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif
}
case GGML_TYPE_Q4_0: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{
k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#elif defined(__ARM_FEATURE_DOTPROD)
tinyBLAS_Q0_ARM<block_q4_0> tb{
k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif
}
case GGML_TYPE_Q5_0: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_q5_0, block_q8_0, float> tb{
k, (const block_q5_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif
}
case GGML_TYPE_IQ4_NL: {
if (Btype != GGML_TYPE_Q8_0)
return false;
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
tinyBLAS_Q0_AVX<block_iq4_nl, block_q8_0, float> tb{
k, (const block_iq4_nl *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
ith, nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif
}
default:
return false;
}
(void)m;
(void)n;
(void)k;
(void)A;
(void)lda;
(void)B;
(void)ldb;
(void)C;
(void)ldc;
(void)ith;
(void)nth;
(void)Atype;
(void)Btype;
(void)Ctype;
}