|
#include "argsort.cuh" |
|
|
|
template<typename T> |
|
static inline __device__ void ggml_cuda_swap(T & a, T & b) { |
|
T tmp = a; |
|
a = b; |
|
b = tmp; |
|
} |
|
|
|
template<ggml_sort_order order> |
|
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) { |
|
|
|
int col = threadIdx.x; |
|
int row = blockIdx.y; |
|
|
|
if (col >= ncols_pad) { |
|
return; |
|
} |
|
|
|
const float * x_row = x + row * ncols; |
|
extern __shared__ int dst_row[]; |
|
|
|
|
|
dst_row[col] = col; |
|
|
|
__syncthreads(); |
|
|
|
for (int k = 2; k <= ncols_pad; k *= 2) { |
|
for (int j = k / 2; j > 0; j /= 2) { |
|
int ixj = col ^ j; |
|
if (ixj > col) { |
|
if ((col & k) == 0) { |
|
if (dst_row[col] >= ncols || |
|
(dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? |
|
x_row[dst_row[col]] > x_row[dst_row[ixj]] : |
|
x_row[dst_row[col]] < x_row[dst_row[ixj]])) |
|
) { |
|
ggml_cuda_swap(dst_row[col], dst_row[ixj]); |
|
} |
|
} else { |
|
if (dst_row[ixj] >= ncols || |
|
(dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? |
|
x_row[dst_row[col]] < x_row[dst_row[ixj]] : |
|
x_row[dst_row[col]] > x_row[dst_row[ixj]])) |
|
) { |
|
ggml_cuda_swap(dst_row[col], dst_row[ixj]); |
|
} |
|
} |
|
} |
|
__syncthreads(); |
|
} |
|
} |
|
|
|
|
|
if (col < ncols) { |
|
dst[row * ncols + col] = dst_row[col]; |
|
} |
|
} |
|
|
|
static int next_power_of_2(int x) { |
|
int n = 1; |
|
while (n < x) { |
|
n *= 2; |
|
} |
|
return n; |
|
} |
|
|
|
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) { |
|
|
|
const int ncols_pad = next_power_of_2(ncols); |
|
|
|
const dim3 block_dims(ncols_pad, 1, 1); |
|
const dim3 block_nums(1, nrows, 1); |
|
const size_t shared_mem = ncols_pad * sizeof(int); |
|
|
|
|
|
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb); |
|
|
|
if (order == GGML_SORT_ORDER_ASC) { |
|
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad); |
|
} else if (order == GGML_SORT_ORDER_DESC) { |
|
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad); |
|
} else { |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
|
|
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { |
|
const ggml_tensor * src0 = dst->src[0]; |
|
const float * src0_d = (const float *)src0->data; |
|
float * dst_d = (float *)dst->data; |
|
cudaStream_t stream = ctx.stream(); |
|
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32); |
|
GGML_ASSERT( dst->type == GGML_TYPE_I32); |
|
GGML_ASSERT(ggml_is_contiguous(src0)); |
|
|
|
const int64_t ncols = src0->ne[0]; |
|
const int64_t nrows = ggml_nrows(src0); |
|
|
|
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0]; |
|
|
|
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream); |
|
} |
|
|