Mat17892's picture
llamacpp
b664585 verified
#version 450
#ifdef FLOAT16
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#endif
#extension GL_EXT_shader_explicit_arithmetic_types : require
#include "mul_mat_vec_base.comp"
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
#define K_PER_ITER 8
#else
#define K_PER_ITER 2
#endif
uint a_offset, b_offset, d_offset, y_offset;
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
{
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
const uint iybs = col - col%QUANT_K; // y block start index
#if K_PER_ITER == 8
#if QUANT_R == 2
B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4];
B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4];
FLOAT_TYPE b0 = FLOAT_TYPE(bv02.x);
FLOAT_TYPE b1 = FLOAT_TYPE(bv13.x);
FLOAT_TYPE b2 = FLOAT_TYPE(bv02.y);
FLOAT_TYPE b3 = FLOAT_TYPE(bv13.y);
FLOAT_TYPE b4 = FLOAT_TYPE(bv02.z);
FLOAT_TYPE b5 = FLOAT_TYPE(bv13.z);
FLOAT_TYPE b6 = FLOAT_TYPE(bv02.w);
FLOAT_TYPE b7 = FLOAT_TYPE(bv13.w);
#else
B_TYPE_VEC4 bv0 = data_b_v4[(b_offset + iybs + iqs) / 4];
B_TYPE_VEC4 bv1 = data_b_v4[(b_offset + iybs + iqs) / 4 + 1];
FLOAT_TYPE b0 = FLOAT_TYPE(bv0.x);
FLOAT_TYPE b1 = FLOAT_TYPE(bv0.y);
FLOAT_TYPE b2 = FLOAT_TYPE(bv0.z);
FLOAT_TYPE b3 = FLOAT_TYPE(bv0.w);
FLOAT_TYPE b4 = FLOAT_TYPE(bv1.x);
FLOAT_TYPE b5 = FLOAT_TYPE(bv1.y);
FLOAT_TYPE b6 = FLOAT_TYPE(bv1.z);
FLOAT_TYPE b7 = FLOAT_TYPE(bv1.w);
#endif
#else
// Check if the second of the pair of elements is OOB, and don't fetch B or
// accumulate it. We still fetch a pair of elements for A, which is fine for
// quantized formats since they'll be within the same block. We should
// probably skip fetching the second element for F16/F32, but as of now we
// still do.
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);
FLOAT_TYPE b0 = 0, b1 = 0;
b0 = FLOAT_TYPE(data_b[b_offset + iybs + iqs]);
if (!OOB) {
b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
}
#endif
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib = ((first_row + n)*p.ncols + col)/QUANT_K; // block index
#if K_PER_ITER == 8
const vec4 v = dequantize4(ib, iqs, a_offset);
const vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
// matrix multiplication
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
temp[n] = fma(FLOAT_TYPE(v.z), b2, temp[n]);
temp[n] = fma(FLOAT_TYPE(v.w), b3, temp[n]);
temp[n] = fma(FLOAT_TYPE(v2.x), b4, temp[n]);
temp[n] = fma(FLOAT_TYPE(v2.y), b5, temp[n]);
temp[n] = fma(FLOAT_TYPE(v2.z), b6, temp[n]);
temp[n] = fma(FLOAT_TYPE(v2.w), b7, temp[n]);
#else
const vec2 v = dequantize(ib, iqs, a_offset);
// matrix multiplication
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
if (!OOB) {
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
}
#endif
}
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
const uint tid = gl_LocalInvocationID.x;
get_offsets(a_offset, b_offset, d_offset);
a_offset /= QUANT_K;
y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
FLOAT_TYPE temp[NUM_ROWS];
for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
}
uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE);
if (num_iters * K_PER_ITER * BLOCK_SIZE + K_PER_ITER*tid < p.ncols) {
num_iters++;
}
int unroll_count = 4;
uint unrolled_iters = num_iters & ~(unroll_count - 1);
uint i = 0;
while (i < unrolled_iters) {
// Manually partially unroll the loop
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false);
i++;
}
}
unroll_count = 2;
unrolled_iters = num_iters & ~(unroll_count - 1);
while (i < unrolled_iters) {
// Manually partially unroll the loop
[[unroll]] for (uint k = 0; k < unroll_count; ++k) {
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, false);
i++;
}
}
while (i < num_iters) {
iter(temp, first_row, num_rows, tid, i*K_PER_ITER, true);
i++;
}
// sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier();
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
}
barrier();
}
if (tid == 0) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
}
void main() {
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
#if defined(DATA_A_IQ4_NL)
init_iq4nl_shmem();
#endif
// do NUM_ROWS at a time, unless there aren't enough remaining rows
if (first_row + NUM_ROWS <= p.stride_d) {
compute_outputs(first_row, NUM_ROWS);
} else {
if (first_row >= p.stride_d) {
return;
}
compute_outputs(first_row, p.stride_d - first_row);
}
}