MatCod commited on
Commit
673ff47
·
verified ·
1 Parent(s): 5b7f039

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -4
app.py CHANGED
@@ -35,14 +35,14 @@ class EnergyMLPredictor:
35
  self.xgb_encoders = xgb_data['label_encoders']
36
 
37
  # Load Threshold Models
38
- if os.path.exists('threshold_model_83.pkl'):
39
- with open('threshold_model_83.pkl', 'rb') as f:
40
  threshold_data = pickle.load(f)
41
  self.threshold_model_83 = threshold_data['model']
42
  self.threshold_preprocessor = threshold_data['preprocessor']
43
 
44
- if os.path.exists('threshold_model_90.pkl'):
45
- with open('threshold_model_90.pkl', 'rb') as f:
46
  threshold_data = pickle.load(f)
47
  self.threshold_model_90 = threshold_data['model']
48
 
@@ -317,6 +317,50 @@ energy_example = """[
317
  }
318
  ]"""
319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
  # Create Gradio interface
321
  with gr.Blocks(title="Energy ML Cloud", theme=gr.themes.Default()) as app:
322
 
@@ -335,6 +379,13 @@ with gr.Blocks(title="Energy ML Cloud", theme=gr.themes.Default()) as app:
335
  value="Threshold Detection"
336
  )
337
 
 
 
 
 
 
 
 
338
  json_input = gr.Textbox(
339
  label="JSON Input",
340
  placeholder="Enter JSON data here...",
@@ -357,7 +408,19 @@ with gr.Blocks(title="Energy ML Cloud", theme=gr.themes.Default()) as app:
357
  else:
358
  return energy_example
359
 
 
 
 
 
 
 
 
 
 
360
  model_choice.change(update_example, inputs=[model_choice], outputs=[json_input])
 
 
 
361
  predict_btn.click(make_prediction, inputs=[model_choice, json_input], outputs=[output])
362
 
363
  with gr.Accordion("Model Information", open=False):
 
35
  self.xgb_encoders = xgb_data['label_encoders']
36
 
37
  # Load Threshold Models
38
+ if os.path.exists('threshold_model_83_autoclave.pkl'):
39
+ with open('threshold_model_83_autoclave.pkl', 'rb') as f:
40
  threshold_data = pickle.load(f)
41
  self.threshold_model_83 = threshold_data['model']
42
  self.threshold_preprocessor = threshold_data['preprocessor']
43
 
44
+ if os.path.exists('threshold_model_90_autoclave.pkl'):
45
+ with open('threshold_model_90_autoclave.pkl', 'rb') as f:
46
  threshold_data = pickle.load(f)
47
  self.threshold_model_90 = threshold_data['model']
48
 
 
317
  }
318
  ]"""
319
 
320
+ # Test data from holdout period (last 2 months used in training)
321
+ week_test_data = """[
322
+ {"data": "2025-04-19", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2007, "extracao_forno": 699.561202512973, "porcentagem_caco": 10.0062724674475, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
323
+ {"data": "2025-04-20", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2026, "extracao_forno": 699.169485837721, "porcentagem_caco": 9.99757589767354, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 0},
324
+ {"data": "2025-04-21", "cor": 0, "espessura": 8.0, "ext_boosting": 1.201, "extracao_forno": 699.134346519477, "porcentagem_caco": 9.99807838764974, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
325
+ {"data": "2025-04-22", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2074, "extracao_forno": 701.318973743488, "porcentagem_caco": 9.99545180216949, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
326
+ {"data": "2025-04-23", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2028, "extracao_forno": 702.765143096952, "porcentagem_caco": 9.97488288777139, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
327
+ {"data": "2025-04-24", "cor": 0, "espessura": 8.0, "ext_boosting": 1.3973, "extracao_forno": 700.8439481142, "porcentagem_caco": 10.002226628142, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
328
+ {"data": "2025-04-25", "cor": 0, "espessura": 8.0, "ext_boosting": 1.6005, "extracao_forno": 702.032548397562, "porcentagem_caco": 9.98529201530728, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}
329
+ ]"""
330
+
331
+ month_test_data = """[
332
+ {"data": "2025-04-19", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2007, "extracao_forno": 699.561202512973, "porcentagem_caco": 10.0062724674475, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
333
+ {"data": "2025-04-20", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2026, "extracao_forno": 699.169485837721, "porcentagem_caco": 9.99757589767354, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 0},
334
+ {"data": "2025-04-21", "cor": 0, "espessura": 8.0, "ext_boosting": 1.201, "extracao_forno": 699.134346519477, "porcentagem_caco": 9.99807838764974, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
335
+ {"data": "2025-04-22", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2074, "extracao_forno": 701.318973743488, "porcentagem_caco": 9.99545180216949, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
336
+ {"data": "2025-04-23", "cor": 0, "espessura": 8.0, "ext_boosting": 1.2028, "extracao_forno": 702.765143096952, "porcentagem_caco": 9.97488288777139, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
337
+ {"data": "2025-04-24", "cor": 0, "espessura": 8.0, "ext_boosting": 1.3973, "extracao_forno": 700.8439481142, "porcentagem_caco": 10.002226628142, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 1},
338
+ {"data": "2025-04-25", "cor": 0, "espessura": 8.0, "ext_boosting": 1.6005, "extracao_forno": 702.032548397562, "porcentagem_caco": 9.98529201530728, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
339
+ {"data": "2025-04-26", "cor": 0, "espessura": 8.0, "ext_boosting": 1.7549, "extracao_forno": 703.33718364331, "porcentagem_caco": 9.96677008271902, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
340
+ {"data": "2025-04-27", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8022, "extracao_forno": 698.519152270116, "porcentagem_caco": 10.0355158154479, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
341
+ {"data": "2025-04-28", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8023, "extracao_forno": 699.802291106822, "porcentagem_caco": 10.0171149610168, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
342
+ {"data": "2025-04-29", "cor": 0, "espessura": 8.0, "ext_boosting": 1.803, "extracao_forno": 702.213883737496, "porcentagem_caco": 9.98271347568585, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
343
+ {"data": "2025-04-30", "cor": 0, "espessura": 8.0, "ext_boosting": 1.801, "extracao_forno": 701.164091438783, "porcentagem_caco": 9.99765972843181, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
344
+ {"data": "2025-05-01", "cor": 0, "espessura": 8.0, "ext_boosting": 1.7999, "extracao_forno": 701.096395285213, "porcentagem_caco": 9.99862507800837, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
345
+ {"data": "2025-05-02", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8016, "extracao_forno": 701.004721690124, "porcentagem_caco": 9.99993264396119, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 1, "autoclave": 0},
346
+ {"data": "2025-05-03", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8023, "extracao_forno": 699.505291072901, "porcentagem_caco": 10.021368086077, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
347
+ {"data": "2025-05-04", "cor": 0, "espessura": 8.0, "ext_boosting": 1.8036, "extracao_forno": 700.073447985429, "porcentagem_caco": 10.0132350686523, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
348
+ {"data": "2025-05-05", "cor": 0, "espessura": 8.0, "ext_boosting": 0.689, "extracao_forno": 700.60585295748, "porcentagem_caco": 10.0056258028798, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
349
+ {"data": "2025-05-06", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.123418185867, "porcentagem_caco": 10.026841924692, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
350
+ {"data": "2025-05-07", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.086556585488, "porcentagem_caco": 10.0273706223712, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
351
+ {"data": "2025-05-08", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 698.120389195209, "porcentagem_caco": 10.0412480547676, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
352
+ {"data": "2025-05-09", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 697.228099576186, "porcentagem_caco": 9.9680434627127, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
353
+ {"data": "2025-05-10", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 697.37935572186, "porcentagem_caco": 9.96588147179382, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 0},
354
+ {"data": "2025-05-11", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.563378916139, "porcentagem_caco": 10.0205359675357, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
355
+ {"data": "2025-05-12", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 698.733542903546, "porcentagem_caco": 10.0324366436888, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
356
+ {"data": "2025-05-13", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 699.509702244859, "porcentagem_caco": 10.0213048904162, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
357
+ {"data": "2025-05-14", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 701.657766576732, "porcentagem_caco": 9.99062553558067, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
358
+ {"data": "2025-05-15", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 674.645706945424, "porcentagem_caco": 10.0052515424159, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
359
+ {"data": "2025-05-16", "cor": 0, "espessura": 8.0, "ext_boosting": 0.0, "extracao_forno": 653.148421891636, "porcentagem_caco": 9.95179622600148, "pot_boost": 3.0, "Prod_E": 0, "Prod_L": 0, "autoclave": 1},
360
+ {"data": "2025-05-17", "cor": 0, "espessura": 6.0, "ext_boosting": 0.0, "extracao_forno": 611.090907286899, "porcentagem_caco": 9.98214819965588, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1},
361
+ {"data": "2025-05-18", "cor": 0, "espessura": 6.0, "ext_boosting": 0.0, "extracao_forno": 599.399563235682, "porcentagem_caco": 10.0100173040013, "pot_boost": 3.0, "Prod_E": 1, "Prod_L": 0, "autoclave": 1}
362
+ ]"""
363
+
364
  # Create Gradio interface
365
  with gr.Blocks(title="Energy ML Cloud", theme=gr.themes.Default()) as app:
366
 
 
379
  value="Threshold Detection"
380
  )
381
 
382
+ # Quick test data options
383
+ gr.Markdown("### Quick Test Options")
384
+ with gr.Row():
385
+ load_week_btn = gr.Button("Load Week Test Data", size="sm")
386
+ load_month_btn = gr.Button("Load Month Test Data", size="sm")
387
+ clear_btn = gr.Button("Clear", size="sm")
388
+
389
  json_input = gr.Textbox(
390
  label="JSON Input",
391
  placeholder="Enter JSON data here...",
 
408
  else:
409
  return energy_example
410
 
411
+ def load_week_data():
412
+ return week_test_data
413
+
414
+ def load_month_data():
415
+ return month_test_data
416
+
417
+ def clear_data():
418
+ return ""
419
+
420
  model_choice.change(update_example, inputs=[model_choice], outputs=[json_input])
421
+ load_week_btn.click(fn=load_week_data, outputs=json_input)
422
+ load_month_btn.click(fn=load_month_data, outputs=json_input)
423
+ clear_btn.click(fn=clear_data, outputs=json_input)
424
  predict_btn.click(make_prediction, inputs=[model_choice, json_input], outputs=[output])
425
 
426
  with gr.Accordion("Model Information", open=False):