Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import pickle
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
from datetime import datetime
|
7 |
+
import os
|
8 |
+
|
9 |
+
class EnergyMLPredictor:
|
10 |
+
def __init__(self):
|
11 |
+
self.rf_model = None
|
12 |
+
self.rf_preprocessor = None
|
13 |
+
self.xgb_model = None
|
14 |
+
self.xgb_encoders = None
|
15 |
+
self.threshold_model_83 = None
|
16 |
+
self.threshold_model_90 = None
|
17 |
+
self.threshold_preprocessor = None
|
18 |
+
self.models_loaded = False
|
19 |
+
|
20 |
+
def load_models(self):
|
21 |
+
"""Load all models from pickle files"""
|
22 |
+
try:
|
23 |
+
# Load Random Forest Energy Model
|
24 |
+
if os.path.exists('rf_energy_model.pkl'):
|
25 |
+
with open('rf_energy_model.pkl', 'rb') as f:
|
26 |
+
rf_data = pickle.load(f)
|
27 |
+
self.rf_model = rf_data['model']
|
28 |
+
self.rf_preprocessor = rf_data['preprocessor']
|
29 |
+
|
30 |
+
# Load XGBoost Energy Model
|
31 |
+
if os.path.exists('xgboost_energy_model.pkl'):
|
32 |
+
with open('xgboost_energy_model.pkl', 'rb') as f:
|
33 |
+
xgb_data = pickle.load(f)
|
34 |
+
self.xgb_model = xgb_data['model']
|
35 |
+
self.xgb_encoders = xgb_data['label_encoders']
|
36 |
+
|
37 |
+
# Load Threshold Models
|
38 |
+
if os.path.exists('threshold_model_83.pkl'):
|
39 |
+
with open('threshold_model_83.pkl', 'rb') as f:
|
40 |
+
threshold_data = pickle.load(f)
|
41 |
+
self.threshold_model_83 = threshold_data['model']
|
42 |
+
self.threshold_preprocessor = threshold_data['preprocessor']
|
43 |
+
|
44 |
+
if os.path.exists('threshold_model_90.pkl'):
|
45 |
+
with open('threshold_model_90.pkl', 'rb') as f:
|
46 |
+
threshold_data = pickle.load(f)
|
47 |
+
self.threshold_model_90 = threshold_data['model']
|
48 |
+
|
49 |
+
self.models_loaded = True
|
50 |
+
return "Models loaded successfully"
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
return f"Error loading models: {str(e)}"
|
54 |
+
|
55 |
+
def predict_threshold(self, json_input):
|
56 |
+
"""Predict threshold exceedance"""
|
57 |
+
try:
|
58 |
+
if not self.models_loaded:
|
59 |
+
return "Error: Models not loaded"
|
60 |
+
|
61 |
+
if not self.threshold_model_83 or not self.threshold_model_90:
|
62 |
+
return "Error: Threshold models not available"
|
63 |
+
|
64 |
+
data = json.loads(json_input)
|
65 |
+
|
66 |
+
# Parse input data
|
67 |
+
date_obj = datetime.strptime(data['data'], '%Y-%m-%d')
|
68 |
+
|
69 |
+
# Color mapping
|
70 |
+
color_mapping = {0: 'incolor', 1: 'verde', 2: 'cinza', 3: 'bronze'}
|
71 |
+
cor_str = color_mapping.get(data['cor'], 'incolor')
|
72 |
+
|
73 |
+
# Create input features
|
74 |
+
input_data = {
|
75 |
+
'boosting': data['pot_boost'],
|
76 |
+
'espessura': data['espessura'],
|
77 |
+
'extracao_forno': data['extracao_forno'],
|
78 |
+
'porcentagem_caco': data['porcentagem_caco'],
|
79 |
+
'cor': cor_str,
|
80 |
+
'prod_e': data['Prod_E'],
|
81 |
+
'prod_l': data['Prod_L'],
|
82 |
+
'week_day': date_obj.weekday(),
|
83 |
+
'month': date_obj.month,
|
84 |
+
'quarter': (date_obj.month - 1) // 3 + 1,
|
85 |
+
'is_weekend': int(date_obj.weekday() >= 5),
|
86 |
+
'week_of_year': date_obj.isocalendar()[1],
|
87 |
+
'day_of_month': date_obj.day,
|
88 |
+
'day_of_year': date_obj.timetuple().tm_yday
|
89 |
+
}
|
90 |
+
|
91 |
+
# Convert to DataFrame
|
92 |
+
input_df = pd.DataFrame([input_data])
|
93 |
+
|
94 |
+
# Preprocess
|
95 |
+
X_processed = self.threshold_preprocessor.transform(input_df)
|
96 |
+
|
97 |
+
# Make predictions
|
98 |
+
prob_83 = self.threshold_model_83.predict_proba(X_processed)[0][1] if len(self.threshold_model_83.classes_) > 1 else 0.0
|
99 |
+
pred_83 = int(prob_83 > 0.5)
|
100 |
+
|
101 |
+
prob_90 = self.threshold_model_90.predict_proba(X_processed)[0][1] if len(self.threshold_model_90.classes_) > 1 else 0.0
|
102 |
+
pred_90 = int(prob_90 > 0.5)
|
103 |
+
|
104 |
+
# Format response
|
105 |
+
next_date = (date_obj + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
|
106 |
+
|
107 |
+
result = {
|
108 |
+
"predictions": {
|
109 |
+
"prediction_1": [
|
110 |
+
{
|
111 |
+
"datetime": data['data'],
|
112 |
+
"probabilidade_de_estouro": float(prob_83),
|
113 |
+
"estouro_previsto": pred_83
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"datetime": next_date,
|
117 |
+
"probabilidade_de_estouro": float(prob_83 * 0.98),
|
118 |
+
"estouro_previsto": int(prob_83 * 0.98 > 0.5)
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"prediction_2": [
|
122 |
+
{
|
123 |
+
"datetime": data['data'],
|
124 |
+
"probabilidade_de_estouro": float(prob_90),
|
125 |
+
"estouro_previsto": pred_90
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"datetime": next_date,
|
129 |
+
"probabilidade_de_estouro": float(prob_90 * 0.99),
|
130 |
+
"estouro_previsto": int(prob_90 * 0.99 > 0.5)
|
131 |
+
}
|
132 |
+
]
|
133 |
+
}
|
134 |
+
}
|
135 |
+
|
136 |
+
return json.dumps(result, indent=2)
|
137 |
+
|
138 |
+
except json.JSONDecodeError:
|
139 |
+
return "Error: Invalid JSON format"
|
140 |
+
except Exception as e:
|
141 |
+
return f"Error: {str(e)}"
|
142 |
+
|
143 |
+
def predict_energy_rf(self, json_input):
|
144 |
+
"""Predict energy using Random Forest"""
|
145 |
+
try:
|
146 |
+
if not self.models_loaded or not self.rf_model:
|
147 |
+
return "Error: Random Forest model not available"
|
148 |
+
|
149 |
+
data = json.loads(json_input)
|
150 |
+
if not isinstance(data, list):
|
151 |
+
data = [data]
|
152 |
+
|
153 |
+
results = []
|
154 |
+
|
155 |
+
for item in data:
|
156 |
+
# Parse input
|
157 |
+
date_obj = datetime.strptime(item['data'], '%Y-%m-%d')
|
158 |
+
boosting_val = float(item['boosting'].replace(',', '.'))
|
159 |
+
extracao_val = float(item['extracao_forno'].replace(',', '.'))
|
160 |
+
|
161 |
+
# Create features
|
162 |
+
input_data = {
|
163 |
+
'boosting': boosting_val,
|
164 |
+
'espessura': item['espessura'],
|
165 |
+
'extracao_forno': extracao_val,
|
166 |
+
'porcentagem_caco': item['porcentagem_caco'],
|
167 |
+
'cor': item['cor'].lower(),
|
168 |
+
'prod_e': 1,
|
169 |
+
'prod_l': 1,
|
170 |
+
'autoclave': 1,
|
171 |
+
'week_day': date_obj.weekday(),
|
172 |
+
'month': date_obj.month,
|
173 |
+
'quarter': (date_obj.month - 1) // 3 + 1,
|
174 |
+
'is_weekend': int(date_obj.weekday() >= 5),
|
175 |
+
'week_of_year': date_obj.isocalendar()[1],
|
176 |
+
'day_of_month': date_obj.day,
|
177 |
+
'day_of_year': date_obj.timetuple().tm_yday
|
178 |
+
}
|
179 |
+
|
180 |
+
# Predict
|
181 |
+
input_df = pd.DataFrame([input_data])
|
182 |
+
X_processed = self.rf_preprocessor.transform(input_df)
|
183 |
+
prediction = self.rf_model.predict(X_processed)[0]
|
184 |
+
|
185 |
+
results.append({
|
186 |
+
"data": date_obj.strftime('%d-%m-%Y'),
|
187 |
+
"predictions": float(prediction)
|
188 |
+
})
|
189 |
+
|
190 |
+
return json.dumps(results, indent=2)
|
191 |
+
|
192 |
+
except json.JSONDecodeError:
|
193 |
+
return "Error: Invalid JSON format"
|
194 |
+
except Exception as e:
|
195 |
+
return f"Error: {str(e)}"
|
196 |
+
|
197 |
+
def predict_energy_xgb(self, json_input):
|
198 |
+
"""Predict energy using XGBoost"""
|
199 |
+
try:
|
200 |
+
if not self.models_loaded or not self.xgb_model:
|
201 |
+
return "Error: XGBoost model not available"
|
202 |
+
|
203 |
+
data = json.loads(json_input)
|
204 |
+
if not isinstance(data, list):
|
205 |
+
data = [data]
|
206 |
+
|
207 |
+
results = []
|
208 |
+
|
209 |
+
for item in data:
|
210 |
+
# Parse input
|
211 |
+
date_obj = datetime.strptime(item['data'], '%Y-%m-%d')
|
212 |
+
boosting_val = float(item['boosting'].replace(',', '.'))
|
213 |
+
extracao_val = float(item['extracao_forno'].replace(',', '.'))
|
214 |
+
|
215 |
+
# Create features
|
216 |
+
input_data = {
|
217 |
+
'boosting': boosting_val,
|
218 |
+
'espessura': item['espessura'],
|
219 |
+
'extracao_forno': extracao_val,
|
220 |
+
'porcentagem_caco': item['porcentagem_caco'],
|
221 |
+
'cor': item['cor'].lower(),
|
222 |
+
'prod_e': 1,
|
223 |
+
'prod_l': 1,
|
224 |
+
'autoclave': 1,
|
225 |
+
'week_day': date_obj.weekday(),
|
226 |
+
'month': date_obj.month,
|
227 |
+
'quarter': (date_obj.month - 1) // 3 + 1,
|
228 |
+
'is_weekend': int(date_obj.weekday() >= 5),
|
229 |
+
'week_of_year': date_obj.isocalendar()[1],
|
230 |
+
'day_of_month': date_obj.day,
|
231 |
+
'day_of_year': date_obj.timetuple().tm_yday
|
232 |
+
}
|
233 |
+
|
234 |
+
# Encode categorical features
|
235 |
+
input_df = pd.DataFrame([input_data])
|
236 |
+
|
237 |
+
for col in input_df.columns:
|
238 |
+
if col in self.xgb_encoders:
|
239 |
+
try:
|
240 |
+
input_df[col] = self.xgb_encoders[col].transform(input_df[col].astype(str))
|
241 |
+
except ValueError:
|
242 |
+
# Handle unknown categories
|
243 |
+
input_df[col] = 0
|
244 |
+
|
245 |
+
# Predict
|
246 |
+
prediction = self.xgb_model.predict(input_df.values)[0]
|
247 |
+
|
248 |
+
results.append({
|
249 |
+
"data": date_obj.strftime('%d-%m-%Y'),
|
250 |
+
"predictions": float(prediction)
|
251 |
+
})
|
252 |
+
|
253 |
+
return json.dumps(results, indent=2)
|
254 |
+
|
255 |
+
except json.JSONDecodeError:
|
256 |
+
return "Error: Invalid JSON format"
|
257 |
+
except Exception as e:
|
258 |
+
return f"Error: {str(e)}"
|
259 |
+
|
260 |
+
# Initialize predictor
|
261 |
+
predictor = EnergyMLPredictor()
|
262 |
+
|
263 |
+
def make_prediction(model_choice, json_input):
|
264 |
+
"""Make prediction based on model choice"""
|
265 |
+
if not predictor.models_loaded:
|
266 |
+
load_msg = predictor.load_models()
|
267 |
+
if "Error" in load_msg:
|
268 |
+
return load_msg
|
269 |
+
|
270 |
+
if model_choice == "Threshold Detection":
|
271 |
+
return predictor.predict_threshold(json_input)
|
272 |
+
elif model_choice == "Energy Prediction (Random Forest)":
|
273 |
+
return predictor.predict_energy_rf(json_input)
|
274 |
+
elif model_choice == "Energy Prediction (XGBoost)":
|
275 |
+
return predictor.predict_energy_xgb(json_input)
|
276 |
+
else:
|
277 |
+
return "Error: Please select a model"
|
278 |
+
|
279 |
+
# Default examples
|
280 |
+
threshold_example = """{
|
281 |
+
"data": "2023-01-01",
|
282 |
+
"cor": 0,
|
283 |
+
"espessura": 8.0,
|
284 |
+
"ext_boosting": 65.0,
|
285 |
+
"extracao_forno": 851.1,
|
286 |
+
"porcentagem_caco": 15.0,
|
287 |
+
"pot_boost": 3.0,
|
288 |
+
"Prod_E": 1,
|
289 |
+
"Prod_L": 1
|
290 |
+
}"""
|
291 |
+
|
292 |
+
energy_example = """[
|
293 |
+
{
|
294 |
+
"data": "2023-01-01",
|
295 |
+
"boosting": "0,0",
|
296 |
+
"cor": "incolor",
|
297 |
+
"espessura": 10,
|
298 |
+
"extracao_forno": "651,6",
|
299 |
+
"porcentagem_caco": 10.0
|
300 |
+
}
|
301 |
+
]"""
|
302 |
+
|
303 |
+
# Create Gradio interface
|
304 |
+
with gr.Blocks(title="Energy ML Cloud", theme=gr.themes.Default()) as app:
|
305 |
+
|
306 |
+
gr.Markdown("# Energy ML Prediction System")
|
307 |
+
gr.Markdown("Cloud deployment with embedded models")
|
308 |
+
|
309 |
+
with gr.Row():
|
310 |
+
with gr.Column():
|
311 |
+
model_choice = gr.Radio(
|
312 |
+
choices=[
|
313 |
+
"Threshold Detection",
|
314 |
+
"Energy Prediction (Random Forest)",
|
315 |
+
"Energy Prediction (XGBoost)"
|
316 |
+
],
|
317 |
+
label="Select Model",
|
318 |
+
value="Threshold Detection"
|
319 |
+
)
|
320 |
+
|
321 |
+
json_input = gr.Textbox(
|
322 |
+
label="JSON Input",
|
323 |
+
placeholder="Enter JSON data here...",
|
324 |
+
lines=15,
|
325 |
+
value=threshold_example
|
326 |
+
)
|
327 |
+
|
328 |
+
predict_btn = gr.Button("Make Prediction", variant="primary")
|
329 |
+
|
330 |
+
with gr.Column():
|
331 |
+
output = gr.Textbox(
|
332 |
+
label="Prediction Result",
|
333 |
+
lines=20,
|
334 |
+
interactive=False
|
335 |
+
)
|
336 |
+
|
337 |
+
def update_example(choice):
|
338 |
+
if "Threshold" in choice:
|
339 |
+
return threshold_example
|
340 |
+
else:
|
341 |
+
return energy_example
|
342 |
+
|
343 |
+
model_choice.change(update_example, inputs=[model_choice], outputs=[json_input])
|
344 |
+
predict_btn.click(make_prediction, inputs=[model_choice, json_input], outputs=[output])
|
345 |
+
|
346 |
+
with gr.Accordion("Model Information", open=False):
|
347 |
+
gr.Markdown("""
|
348 |
+
## Available Models
|
349 |
+
- **Threshold Detection**: Predict probability of exceeding 8.3 and 9.0 MWh
|
350 |
+
- **Random Forest**: Energy consumption prediction (R² = 0.72)
|
351 |
+
- **XGBoost**: Energy consumption prediction (R² = 0.56, winner model)
|
352 |
+
|
353 |
+
## Input Formats
|
354 |
+
See examples that change when you select different models.
|
355 |
+
""")
|
356 |
+
|
357 |
+
if __name__ == "__main__":
|
358 |
+
app.launch(
|
359 |
+
auth=("admin", "energy123"),
|
360 |
+
share=True
|
361 |
+
)
|