MathFrenchToast commited on
Commit
164dce0
·
1 Parent(s): bbc85bc

doc: update readme

Browse files
Files changed (2) hide show
  1. README.md +15 -4
  2. app-withshortcut.py +234 -0
README.md CHANGED
@@ -27,6 +27,7 @@ DuckDuckGo and GoogleSearch have too many rate limit,
27
  This code assume that a local running instance of searxng is on http://localhost:8888
28
 
29
  On windows run it with:
 
30
  $PORT=8888
31
  docker run --rm `
32
  -p ${PORT}:8080 `
@@ -34,13 +35,23 @@ docker run --rm `
34
  -e "BASE_URL=http://localhost:$PORT/" `
35
  -e "INSTANCE_NAME=my-instance" `
36
  -d searxng/searxng
37
-
38
  be sure to allow the json format in /etc/seraxng/settings.yml
39
 
 
 
 
 
 
 
 
 
40
 
41
- For the same reason, for my tool for text to speech I locally run a speech to text docker image running whisper.cpp
42
  whith ffmpeg installed for mp3 > wav conversion
43
 
 
 
44
  And if I really have no longer any available token on openai or gemini, I can run a VLLM instance.
45
 
46
  ## Instrumentation
@@ -48,8 +59,8 @@ And if I really have no longer any available token on openai or gemini, I can ru
48
  Instrumentation is enabled,
49
  an done locally with (Arize-ai phoenix)[https://github.com/Arize-ai/phoenix]
50
  a server is launched with:
51
-
52
  python -m phoenix.server.main serve
53
-
54
  and can be consulted on: http://127.0.0.1:6006
55
 
 
27
  This code assume that a local running instance of searxng is on http://localhost:8888
28
 
29
  On windows run it with:
30
+ ```
31
  $PORT=8888
32
  docker run --rm `
33
  -p ${PORT}:8080 `
 
35
  -e "BASE_URL=http://localhost:$PORT/" `
36
  -e "INSTANCE_NAME=my-instance" `
37
  -d searxng/searxng
38
+ ```
39
  be sure to allow the json format in /etc/seraxng/settings.yml
40
 
41
+ ```
42
+ # remove format to deny access, use lower case.
43
+ # formats: [html, csv, json, rss]
44
+ formats:
45
+ - html
46
+ - json
47
+ ```
48
+
49
 
50
+ For the same reason, for my tool for text to speech I locally run a speech to text docker image running whisper.cpp
51
  whith ffmpeg installed for mp3 > wav conversion
52
 
53
+ It is launched by ttools/sst.py
54
+
55
  And if I really have no longer any available token on openai or gemini, I can run a VLLM instance.
56
 
57
  ## Instrumentation
 
59
  Instrumentation is enabled,
60
  an done locally with (Arize-ai phoenix)[https://github.com/Arize-ai/phoenix]
61
  a server is launched with:
62
+ ```
63
  python -m phoenix.server.main serve
64
+ ```
65
  and can be consulted on: http://127.0.0.1:6006
66
 
app-withshortcut.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+ from dotenv import load_dotenv
7
+
8
+ from myagent import BasicAgent # Import your agent class from myagent.py
9
+ from multiagents import MultiAgent
10
+
11
+ from phoenix.otel import register
12
+ from openinference.instrumentation.smolagents import SmolagentsInstrumentor
13
+
14
+ # use space_host var to determine if running in HF space or locally, if so register local instrumentation
15
+ space_host_startup = os.getenv("SPACE_HOST")
16
+ if not space_host_startup:
17
+ register()
18
+ SmolagentsInstrumentor().instrument()
19
+
20
+ # (Keep Constants as is)
21
+ # --- Constants ---
22
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
23
+ load_dotenv()
24
+
25
+ max_questions = 20
26
+
27
+ # known answer, already solved, to avoid computation cost
28
+ known_answers = {
29
+ "f918266a-b3e0-4914-865d-4faa564f1aef": "0",
30
+ "a1e91b78-d3d8-4675-bb8d-62741b4b68a6": "3",
31
+ "2d83110e-a098-4ebb-9987-066c06fa42d0": "right",
32
+ "8e867cd7-cff9-4e6c-867a-ff5ddc2550be": "3",
33
+ "9d191bce-651d-4746-be2d-7ef8ecadb9c2": "extremely",
34
+ # Add more known answers as needed
35
+ }
36
+
37
+
38
+
39
+ def run_and_submit_all(nb_questions: int, profile: gr.OAuthProfile | None):
40
+ """
41
+ Fetches all questions, runs my Agent on them, submits all answers,
42
+ and displays the results.
43
+ """
44
+ # --- Determine HF Space Runtime URL and Repo URL ---
45
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
46
+
47
+ if profile:
48
+ username= f"{profile.username}"
49
+ print(f"User logged in: {username}")
50
+ else:
51
+ print("User not logged in.")
52
+ return "Please Login to Hugging Face with the button.", None
53
+
54
+ api_url = DEFAULT_API_URL
55
+ questions_url = f"{api_url}/questions"
56
+ file_url = f"{api_url}/files"
57
+ submit_url = f"{api_url}/submit"
58
+
59
+ # 1. Instantiate Agent
60
+ try:
61
+ # agent = BasicAgent()
62
+ agent = MultiAgent()
63
+ except Exception as e:
64
+ print(f"Error instantiating agent: {e}")
65
+ return f"Error initializing agent: {e}", None
66
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
67
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
68
+ print(agent_code)
69
+
70
+ # 2. Fetch Questions
71
+ print(f"Fetching questions from: {questions_url}")
72
+ try:
73
+ response = requests.get(questions_url, timeout=15)
74
+ response.raise_for_status()
75
+ questions_data = response.json()
76
+ if not questions_data:
77
+ print("Fetched questions list is empty.")
78
+ return "Fetched questions list is empty or invalid format.", None
79
+ print(f"Fetched {len(questions_data)} questions.")
80
+ except requests.exceptions.RequestException as e:
81
+ print(f"Error fetching questions: {e}")
82
+ return f"Error fetching questions: {e}", None
83
+ except requests.exceptions.JSONDecodeError as e:
84
+ print(f"Error decoding JSON response from questions endpoint: {e}")
85
+ print(f"Response text: {response.text[:500]}")
86
+ return f"Error decoding server response for questions: {e}", None
87
+ except Exception as e:
88
+ print(f"An unexpected error occurred fetching questions: {e}")
89
+ return f"An unexpected error occurred fetching questions: {e}", None
90
+
91
+ # 3. Run your Agent
92
+ results_log = []
93
+ answers_payload = []
94
+
95
+ # for testing keep only some questions
96
+ questions_data = questions_data[:nb_questions]
97
+
98
+ print(f"Running agent on {len(questions_data)} questions...")
99
+ for item in questions_data:
100
+ task_id = item.get("task_id")
101
+ question_text = item.get("question")
102
+ file_name = item.get("file_name")
103
+ file_question_url = None
104
+ if file_name:
105
+ file_question_url = f"{file_url}/{task_id}"
106
+ if not task_id or question_text is None:
107
+ print(f"Skipping item with missing task_id or question: {item}")
108
+ continue
109
+ try:
110
+ agent_question = question_text
111
+ if file_question_url:
112
+ agent_question += f"\n\nFile URL: {file_question_url}"
113
+
114
+ shortcut = known_answers.get(task_id)
115
+ if shortcut:
116
+ submitted_answer = shortcut
117
+ else:
118
+ submitted_answer = agent(agent_question)
119
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
120
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
121
+ except Exception as e:
122
+ print(f"Error running agent on task {task_id}: {e}")
123
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
124
+
125
+ if not answers_payload:
126
+ print("Agent did not produce any answers to submit.")
127
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
128
+
129
+ # 4. Prepare Submission
130
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
131
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
132
+ print(status_update)
133
+
134
+ # 5. Submit
135
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
136
+ try:
137
+ response = requests.post(submit_url, json=submission_data, timeout=60)
138
+ response.raise_for_status()
139
+ result_data = response.json()
140
+ final_status = (
141
+ f"Submission Successful!\n"
142
+ f"User: {result_data.get('username')}\n"
143
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
144
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
145
+ f"Message: {result_data.get('message', 'No message received.')}"
146
+ )
147
+ print("Submission successful.")
148
+ results_df = pd.DataFrame(results_log)
149
+ return final_status, results_df
150
+ except requests.exceptions.HTTPError as e:
151
+ error_detail = f"Server responded with status {e.response.status_code}."
152
+ try:
153
+ error_json = e.response.json()
154
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
155
+ except requests.exceptions.JSONDecodeError:
156
+ error_detail += f" Response: {e.response.text[:500]}"
157
+ status_message = f"Submission Failed: {error_detail}"
158
+ print(status_message)
159
+ results_df = pd.DataFrame(results_log)
160
+ return status_message, results_df
161
+ except requests.exceptions.Timeout:
162
+ status_message = "Submission Failed: The request timed out."
163
+ print(status_message)
164
+ results_df = pd.DataFrame(results_log)
165
+ return status_message, results_df
166
+ except requests.exceptions.RequestException as e:
167
+ status_message = f"Submission Failed: Network error - {e}"
168
+ print(status_message)
169
+ results_df = pd.DataFrame(results_log)
170
+ return status_message, results_df
171
+ except Exception as e:
172
+ status_message = f"An unexpected error occurred during submission: {e}"
173
+ print(status_message)
174
+ results_df = pd.DataFrame(results_log)
175
+ return status_message, results_df
176
+
177
+
178
+ # --- Build Gradio Interface using Blocks ---
179
+ with gr.Blocks() as demo:
180
+ gr.Markdown("# Basic Agent Evaluation Runner")
181
+ gr.Markdown(
182
+ """
183
+ **Instructions:**
184
+
185
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
186
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
187
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
188
+
189
+ ---
190
+ **Disclaimers:**
191
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
192
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
193
+ """
194
+ )
195
+
196
+ gr.LoginButton()
197
+
198
+ nb_questions = gr.Number(value=20)
199
+
200
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
201
+
202
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
203
+ # Removed max_rows=10 from DataFrame constructor
204
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
205
+
206
+ run_button.click(
207
+ fn=run_and_submit_all,
208
+ inputs=[nb_questions],
209
+ outputs=[status_output, results_table]
210
+ )
211
+
212
+ if __name__ == "__main__":
213
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
214
+ # Check for SPACE_HOST and SPACE_ID at startup for information
215
+ space_host_startup = os.getenv("SPACE_HOST")
216
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
217
+
218
+ if space_host_startup:
219
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
220
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
221
+ else:
222
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
223
+
224
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
225
+ print(f"✅ SPACE_ID found: {space_id_startup}")
226
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
227
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
228
+ else:
229
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
230
+
231
+ print("-"*(60 + len(" App Starting ")) + "\n")
232
+
233
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
234
+ demo.launch(debug=True, share=False)