### ๐Ÿš€ MAIN PROMPT ### MAIN_PROMPT = """ ### **Module 3: Proportional Reasoning Problem Types** "Welcome to this module on proportional reasoning problem types! I'll guide you through three types of problems step by step. ๐Ÿ’ก **First, I will ask you questions and let you solve them before I provide hints or solutions.** Are you ready?" """ def next_step(step): if step == 1: return """๐Ÿš€ **Problem 1: Missing Value Problem** "The scale on a map is **2 cm represents 25 miles**. If a measurement is **24 cm**, how many miles does it represent?" ๐Ÿ’ก **Before solving, think about this:** - "How does 24 cm compare to 2 cm? Can you find the scale factor?" - "If **2 cm = 25 miles**, how can we use this to scale up?" - **Give it a try before I provide hints!** Type your answer. """ elif step == 2: return """๐Ÿ”น **If youโ€™re unsure, hereโ€™s a hint:** 1๏ธโƒฃ "Try setting up a proportion: $$ \frac{2}{25} = \frac{24}{x} $$ Does this equation make sense?" ๐Ÿ’ก **Try again! Type what you think.** """ elif step == 3: return """2๏ธโƒฃ "Now, cross-multiply: $$ 2 \times x = 24 \times 25 $$ Can you solve for \( x \)?" ๐Ÿ’ก **Still stuck? Let me know.** """ elif step == 4: return """3๏ธโƒฃ "Final step: divide both sides by 2: $$ x = \frac{600}{2} = 300 $$ So, 24 cm represents **300 miles**!" ๐Ÿ’ก "Does this make sense? Want to try another method?" """ elif step == 5: return """๐Ÿš€ **Problem 2: Numerical Comparison Problem** "Ali bought **10 pencils for $3.50**, and Ahmet bought **5 pencils for $1.80**. Who got the better deal?" ๐Ÿ’ก **Try solving it first!** - "What does โ€˜better dealโ€™ mean mathematically?" - "How do we compare prices fairly?" """ elif step == 6: return """๐Ÿ”น **If you need a hint, hereโ€™s the first step:** 1๏ธโƒฃ "Find the cost per pencil: $$ \frac{3.50}{10} = 0.35 $$ per pencil (Ali) $$ \frac{1.80}{5} = 0.36 $$ per pencil (Ahmet)" ๐Ÿ’ก **Try again and type your answer.** """ elif step == 7: return """๐Ÿš€ **Problem 3: Qualitative Reasoning Problem** "Kim is mixing paint. Yesterday, she mixed red and white paint. Today, she added **more red paint** but kept the **same white paint**. What happens to the color?" ๐Ÿ’ก **What do you think?** - "How does the ratio of red to white change?" - "Would the color become darker, lighter, or stay the same?" ๐Ÿ’ก **Try explaining your reasoning before I provide hints.** """ elif step == 8: return """๐Ÿ“Œ **Common Core & Creativity-Directed Practices Discussion** "Great work! Now, letโ€™s reflect on how these problems connect to teaching strategies." ๐Ÿ”น **Common Core Standards Covered:** - **CCSS.MATH.CONTENT.6.RP.A.3** (Solving real-world proportional reasoning problems) - **CCSS.MATH.CONTENT.7.RP.A.2** (Recognizing proportional relationships) ๐Ÿ’ก "Which of these standards do you think were covered? Why?" """ elif step == 9: return """๐Ÿ“Œ **Reflection & Problem Posing Activity** "Letโ€™s take it one step further! Try creating your own proportional reasoning problem." ๐Ÿ’ก "Would you like to modify one of the previous problems, or create a brand new one?" """ return "๐ŸŽ‰ **You've completed the module! Would you like to review anything again?**"