File size: 2,356 Bytes
ce5b5d6
 
 
 
 
 
 
f42d630
ce5b5d6
de4d9ed
ce5b5d6
 
 
 
 
 
de4d9ed
ce5b5d6
 
 
de4d9ed
ce5b5d6
de4d9ed
ce5b5d6
 
 
de4d9ed
ce5b5d6
 
 
 
 
 
 
de4d9ed
 
ce5b5d6
 
 
 
 
 
 
de4d9ed
f42d630
ce5b5d6
 
 
de4d9ed
ce5b5d6
 
 
 
 
 
 
 
 
 
 
 
de4d9ed
ce5b5d6
 
de4d9ed
 
ce5b5d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from prompts.initial_prompt import INITIAL_PROMPT
from prompts.main_prompt import MAIN_PROMPT

# Load OpenAI API Key
if os.path.exists(".env"):
    load_dotenv(".env")

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)

def gpt_call(history, user_message,
             model="gpt-4o-mini",
             max_tokens=1024,
             temperature=0.7,
             top_p=0.95):
    """
    Calls OpenAI Chat API to generate responses.
    - history: [(user_text, assistant_text), ...]
    - user_message: latest message from user
    """
    messages = [{"role": "system", "content": MAIN_PROMPT}]
    
    # Add conversation history
    for user_text, assistant_text in history:
        if user_text:
            messages.append({"role": "user", "content": user_text})
        if assistant_text:
            messages.append({"role": "assistant", "content": assistant_text})

    messages.append({"role": "user", "content": user_message})
    
    # OpenAI API Call
    completion = client.chat.completions.create(
        model=model,
        messages=messages,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p
    )
    
    return completion.choices[0].message.content

def respond(user_message, history):
    """
    Handles user input and chatbot responses.
    """
    if not user_message:
        return "", history

    assistant_reply = gpt_call(history, user_message)
    history.append((user_message, assistant_reply))
    return "", history

##############################
#  Gradio Blocks UI
##############################
with gr.Blocks() as demo:
    gr.Markdown("## AI-Guided Math PD Chatbot")

    chatbot = gr.Chatbot(
        value=[("", INITIAL_PROMPT)],
        height=600
    )

    state_history = gr.State([("", INITIAL_PROMPT)])

    user_input = gr.Textbox(
        placeholder="Type your message here...",
        label="Your Input"
    )

    user_input.submit(
        respond,
        inputs=[user_input, state_history],
        outputs=[user_input, chatbot]
    ).then(
        fn=lambda _, h: h,
        inputs=[user_input, chatbot],
        outputs=[state_history]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)