File size: 6,005 Bytes
ce5b5d6
8495abe
b1d645b
ff9f2bc
3c55449
ff9f2bc
 
 
 
343c514
 
 
 
 
 
ff9f2bc
b1d645b
3c55449
 
8495abe
343c514
 
8495abe
343c514
 
 
 
8495abe
343c514
 
8495abe
3c55449
8495abe
343c514
 
b1d645b
343c514
 
 
 
 
 
8495abe
3c55449
8495abe
343c514
 
 
 
 
 
8495abe
3c55449
8495abe
343c514
 
3c55449
343c514
3c55449
343c514
3c55449
 
 
8495abe
343c514
b1d645b
 
 
 
0aad0f1
b1d645b
343c514
 
8495abe
3c55449
 
343c514
 
8495abe
343c514
 
 
 
8495abe
343c514
8495abe
3c55449
 
8495abe
ff9f2bc
 
 
3c55449
ff9f2bc
8495abe
3c55449
 
8495abe
343c514
3c55449
ff9f2bc
3c55449
ff9f2bc
 
8495abe
3c55449
 
8495abe
ff9f2bc
 
 
 
 
8495abe
b1d645b
ff9f2bc
343c514
8495abe
3c55449
 
343c514
 
8495abe
343c514
ff9f2bc
 
0aad0f1
ff9f2bc
8495abe
3c55449
 
8495abe
ff9f2bc
8495abe
3c55449
b1d645b
ff9f2bc
8495abe
3c55449
 
ff9f2bc
 
b1d645b
3c55449
b1d645b
ff9f2bc
 
 
 
 
343c514
8495abe
3c55449
b1d645b
ff9f2bc
8495abe
b1d645b
ff9f2bc
 
8495abe
 
ff9f2bc
 
 
8495abe
3c55449
 
 
 
 
8495abe
ff9f2bc
3c55449
 
ff9f2bc
3c55449
ff9f2bc
 
 
 
8495abe
ff9f2bc
 
3c55449
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
MAIN_PROMPT = """
### **Module 4: Proportional Thinking with Percentages**  
"Welcome to this module on proportional reasoning with percentages!  
Your task is to **solve a problem using different representations** and connect the proportional relationship to the meaning of the problem."  

πŸ“Œ **Problem:**  
Orrin and Damen decided to invest money in a local ice cream shop. Orrin invests **$1,500**, which is **60%** of their total investment.  
πŸ’‘ **How much do they invest together?**  

βœ… **Choose a method to solve:**  
1️⃣ **Bar Model**  
2️⃣ **Double Number Line**  
3️⃣ **Equations**  

πŸ’‘ **Explain your thought process before I provide any hints!**  
πŸš€ **Let’s begin! Which method would you like to use first?**  
"""

def next_step(step):
    if step == 1:
        return """πŸš€ **Step 1: Choose Your Method**  
"Which method would you like to use to solve this problem?"  

πŸ’‘ **Select one method:**  
- **Bar Model**  
- **Double Number Line**  
- **Equation**  

πŸ”Ή **Once you choose a method, explain your approach first.**  
πŸ”Ή **Try your best before I provide guidance!**  
"""

    elif step == 2:
        return """πŸš€ **Step 2: Solve Using a Bar Model**  
"Great choice! Let's use a bar model to visualize the problem."  

πŸ’‘ **How do you think a bar model can help?**  
- "How will you divide the bar to represent percentages?"  
- "What should each section represent?"  
- "How will you calculate the total investment?"  

πŸ”Ή **Explain your reasoning before I provide hints!**  
"""

    elif step == 3:
        return """πŸ”Ή **Hint 1:**  
"Try drawing a **bar representing 100% of the total investment**.  
- Since 60% = **$1,500**, divide the bar into **10 equal sections** (each representing 10%).  
- Shade in **6 sections** to represent Orrin’s 60%.  

Does this setup make sense?"  
"""

    elif step == 4:
        return """πŸ”Ή **Hint 2:**  
"Now, find the value of **1 part** by dividing **$1,500 by 6**:  
  \\[
  \\text{Value of 1 part} = \\frac{1500}{6} = 250
  \\]  
What is the total investment?"  
"""

    elif step == 5:
        return """βœ… **Solution:**  
"Great job! Since **1 part = $250**, multiplying by **10** gives:  
  \\[
  \\text{Total Investment} = 250 \\times 10 = 2500
  \\]  
So, the total investment by Orrin and Damen together is **$2,500.**"  

πŸ’‘ **Reflection:**  
- "How did the bar model help in understanding this problem?"  
πŸš€ "Would you like to try another method, such as a **double number line**?"  
"""

    elif step == 6:
        return """πŸš€ **Step 3: Solve Using a Double Number Line**  
"Now, let's try solving this using a **double number line**."  

πŸ’‘ **Before I provide hints, explain your approach:**  
- "How will you set up the two number lines?"  
- "What key points should be labeled?"  
- "How can you use it to find the total investment?"  

πŸ”Ή **Think about it and explain before I provide guidance!**  
"""

    elif step == 7:
        return """πŸ”Ή **Hint 1:**  
"Start by labeling the number lines:  
- One represents **percentages**: **0%, 60%, and 100%**.  
- The other represents **dollars**: **$0, $1,500, and the total investment**.  

What values go in between?"  
"""

    elif step == 8:
        return """πŸ”Ή **Hint 2:**  
"Now, divide $1,500 by 6 to find **10%**:  
  \\[
  \\text{Value of 10\\%} = \\frac{1500}{6} = 250
  \\]  
Align this with **10% on the number line.**  
Now, what is the value at 100%?"  
"""

    elif step == 9:
        return """βœ… **Solution:**  
"Now that we’ve aligned the values:  
  - 10% = **$250**  
  - 100% = **$2500**  

So, the total investment is **$2,500!**  

πŸ’‘ **Reflection:**  
- "How does this method compare to the bar model?"  
πŸš€ "Would you like to try solving with an **equation**?"  
"""

    elif step == 10:
        return """πŸš€ **Step 4: Solve Using an Equation**  
"Now, let's try setting up an **equation** to represent the problem."  

πŸ’‘ **Before I provide hints, explain your approach:**  
- "How can we express 60% mathematically?"  
- "What unknown are we solving for?"  

πŸ”Ή **Try setting up the equation before I provide hints!**  
"""

    elif step == 11:
        return """πŸ”Ή **Hint 1:**  
"Write the relationship as a proportion:  
  \\[
  \\frac{60}{100} = \\frac{1500}{x}
  \\]  
How can we solve for \\(x\\)?"  
"""

    elif step == 12:
        return """πŸ”Ή **Hint 2:**  
"Use **cross-multiplication**:  
  \\[
  60x = 1500 \\times 100
  \\]  
Now divide both sides by 60. What do you get?"  
"""

    elif step == 13:
        return """βœ… **Solution:**  
"Great job! Solving the equation:  
  \\[
  x = \\frac{1500 \\times 100}{60} = 2500
  \\]  
So, the total investment is **$2,500!**  

πŸ’‘ **Reflection:**  
- "Which method do you prefer: Bar Model, Double Number Line, or Equation?"  
πŸš€ "Now, let’s reflect on the **Common Core practices** we used."  
"""

    elif step == 14:
        return """πŸ“Œ **Common Core Standards Discussion**  
"Great job! Let’s reflect on how this connects to teaching strategies."  

πŸ”Ή **Which Common Core Standards did we cover?**  
- **CCSS.MATH.CONTENT.6.RP.A.3** (Solving real-world proportional reasoning problems)  
- **CCSS.MATH.CONTENT.7.RP.A.2** (Recognizing proportional relationships)  
- **CCSS.MATH.PRACTICE.MP1** (Making sense of problems & persevering)  
- **CCSS.MATH.PRACTICE.MP4** (Modeling with mathematics)  

πŸ’‘ "Which of these standards do you think applied most? Why?"  
"""

    elif step == 15:
        return """πŸ“Œ **Creativity-Directed Practices Discussion**  
"Throughout this module, we engaged in creativity-directed strategies, such as:  
βœ… Using multiple solution methods  
βœ… Encouraging deep reasoning  
βœ… Connecting visual and numerical representations  

πŸ’‘ "How do these strategies help students build deeper understanding?"  
πŸš€ "Now, let’s create your own problem!"  
"""

    return "πŸŽ‰ **You've completed the module! Would you like to review anything again?**"