File size: 2,430 Bytes
866286c
 
 
 
 
3538cf5
866286c
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6aaf6
73b1050
7b6aaf6
866286c
7b6aaf6
8bcaf24
 
 
7b6aaf6
8bcaf24
7b6aaf6
 
3538cf5
7b6aaf6
4910ade
7b6aaf6
 
73b1050
3538cf5
7b6aaf6
4910ade
3538cf5
 
 
866286c
 
 
 
 
0cfa14e
 
7b6aaf6
866286c
 
 
8bcaf24
866286c
 
7b6aaf6
 
866286c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from prompts.initial_prompt import INITIAL_PROMPT
from prompts.main_prompt import MAIN_PROMPT, get_prompt_for_method, get_feedback_for_method

# βœ… Load API key from .env file
if os.path.exists(".env"):
    load_dotenv(".env")

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# βœ… Ensure API Key is available
if not OPENAI_API_KEY:
    raise ValueError("🚨 OpenAI API key is missing! Set it in the .env file.")

client = OpenAI(api_key=OPENAI_API_KEY)

# βœ… Chatbot Response Function
def respond(user_message, history, selected_method):
    if not user_message:
        return "", history, selected_method

    user_message = user_message.strip().lower()  # Normalize input

    valid_methods = ["bar model", "double number line", "equation"]

    # βœ… If user selects a method, store it and provide the method-specific prompt
    if user_message in valid_methods:
        selected_method = user_message  # Store the method
        method_prompt = get_prompt_for_method(user_message)
        history.append((user_message, method_prompt))  # Ensure tuple format
        return method_prompt, history, selected_method

    # βœ… If a method has already been selected, provide feedback
    if selected_method:
        feedback = get_feedback_for_method(selected_method, user_message)
        history.append((user_message, feedback))  # Ensure tuple format
        return feedback, history, selected_method

    error_msg = "❌ Please select a method first (Bar Model, Double Number Line, or Equation)."
    history.append((user_message, error_msg))  # Ensure tuple format
    return error_msg, history, selected_method

# βœ… Gradio UI Setup
with gr.Blocks() as demo:
    gr.Markdown("## πŸ€– AI-Guided Math PD Chatbot")

    chatbot = gr.Chatbot(value=[(INITIAL_PROMPT, "")], height=500)
    state_history = gr.State([(INITIAL_PROMPT, "")])
    state_selected_method = gr.State(None)  # βœ… New state to track selected method

    user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input")

    # βœ… Handling user input and response logic
    user_input.submit(
        respond,
        inputs=[user_input, state_history, state_selected_method],
        outputs=[chatbot, state_history, state_selected_method]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)