File size: 6,320 Bytes
ce5b5d6
8495abe
b1d645b
3c55449
 
 
 
 
 
 
 
b1d645b
3c55449
 
8495abe
 
3c55449
 
8495abe
b1d645b
0aad0f1
 
8495abe
0aad0f1
8495abe
3c55449
8495abe
 
b1d645b
3c55449
 
b1d645b
 
8495abe
3c55449
8495abe
 
b1d645b
 
 
 
 
8495abe
3c55449
8495abe
3c55449
 
 
 
 
 
 
 
 
8495abe
b1d645b
3c55449
b1d645b
 
 
 
0aad0f1
b1d645b
 
 
8495abe
 
3c55449
 
 
 
 
8495abe
b1d645b
3c55449
 
8495abe
b1d645b
8495abe
3c55449
 
8495abe
3c55449
 
 
 
 
 
8495abe
3c55449
 
8495abe
3c55449
 
 
 
 
8495abe
3c55449
 
8495abe
3c55449
b1d645b
 
 
3c55449
8495abe
b1d645b
3c55449
 
8495abe
3c55449
 
 
 
 
8495abe
b1d645b
3c55449
 
0aad0f1
b1d645b
8495abe
3c55449
 
8495abe
3c55449
8495abe
3c55449
b1d645b
3c55449
8495abe
3c55449
 
 
 
b1d645b
3c55449
b1d645b
8495abe
3c55449
b1d645b
3c55449
8495abe
b1d645b
3c55449
 
8495abe
 
3c55449
 
 
8495abe
3c55449
 
 
 
 
8495abe
3c55449
 
 
 
 
 
 
 
 
8495abe
3c55449
 
0aad0f1
3c55449
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
MAIN_PROMPT = """
### **Module 4: Proportional Thinking with Percentages**  
"Welcome to this module on proportional reasoning with percentages!  
In this module, you will explore different representations of proportional thinking:  
1️⃣ **Bar Models**  
2️⃣ **Double Number Lines**  
3️⃣ **Equations & Proportional Relationships**  

πŸ’‘ **You will solve the given problem using different strategies and explain your reasoning.**  
πŸ’‘ **The AI will guide you through hints if neededβ€”try solving before asking for help!**  
πŸš€ **Let’s begin!**  
"""

def next_step(step):
    if step == 1:
        return """πŸš€ **Step 1: Solve Using a Bar Model**  
"Orrin invests **$1,500**, which is **60%** of their total investment.  
How can you use a bar model to solve this problem?"  

πŸ’‘ **Think before answering:**  
- "How can we represent the **total investment** as a bar?"  
- "If 60% is **$1,500**, how many sections should the bar have?"  

πŸ”Ή **Try setting it up before I provide hints!**  
"""

    elif step == 2:
        return """πŸ”Ή **Hint 1:**  
"Start by drawing a rectangle to represent the **total investment**.  
- Divide it into **10 equal sections** (since each section represents **10%** of the total).  
- Since **60% corresponds to $1,500**, shade in **6 parts** of the bar.  

Now, can you determine how much **1 part** represents?"  
"""

    elif step == 3:
        return """πŸ”Ή **Hint 2:**  
"If 6 parts correspond to **$1,500**, find the value of **one part** by dividing:  
  \\[
  \\text{Value of 1 part} = \\frac{1500}{6}
  \\]  
What do you get?"  
"""

    elif step == 4:
        return """πŸ”Ή **Hint 3:**  
"Now that we know the value of **one part**, we can find the total investment by multiplying by 10:  
  \\[
  \\text{Total Investment} = \\text{Value of 1 part} \\times 10
  \\]  
Can you calculate and explain your answer?"  
"""

    elif step == 5:
        return """βœ… **Solution:**  
"We found that **1 part = $250**.  
Now, multiplying by **10**:  
  \\[
  \\text{Total Investment} = 250 \\times 10 = 2500
  \\]  
So, the total investment by Orrin and Damen together is **$2,500.**"  

πŸ’‘ **Reflection:**  
- "How does this visual help in understanding the problem?"  
- "Would this be useful for students struggling with percentages?"  
πŸš€ "Now, let's solve this problem using a **double number line!**"  
"""

    elif step == 6:
        return """πŸš€ **Step 2: Solve Using a Double Number Line**  
"A double number line is another great way to visualize this problem.  
How would you set up a **double number line** to solve this?"  

πŸ’‘ **Think before answering:**  
- "What labels would you use for the two number lines?"  
- "How can you align percentages with dollar values?"  

πŸ”Ή **Try setting it up before I provide hints!**  
"""

    elif step == 7:
        return """πŸ”Ή **Hint 1:**  
"Start by labeling the two number lines:  
- The **top line** represents **percentages** (0%, 10%, 20%, …, 100%).  
- The **bottom line** represents **dollars** ($0, $?, $?, …, Total Investment).  
- Since **60% = $1,500**, mark this point on both lines.  

Can you determine what **10%** would be?"  
"""

    elif step == 8:
        return """πŸ”Ή **Hint 2:**  
"To find **10%**, divide **$1,500 by 6**:  
  \\[
  \\text{10% Value} = \\frac{1500}{6} = 250
  \\]  
Now, use this to determine **100%**!"  
"""

    elif step == 9:
        return """βœ… **Solution:**  
"Now that we know **10% = $250**, we can multiply by 10:  
  \\[
  \\text{Total Investment} = 250 \\times 10 = 2500
  \\]  
So, the total investment by Orrin and Damen together is **$2,500.**"  

πŸ’‘ **Reflection:**  
- "How does the double number line help in understanding the proportional relationship?"  
πŸš€ "Now, let's solve this using **an equation!**"  
"""

    elif step == 10:
        return """πŸš€ **Step 3: Solve Using an Equation**  
"An equation allows us to solve proportions algebraically.  
How can you set up an equation for this problem?"  

πŸ’‘ **Think before answering:**  
- "How can we represent 60% in fractional form?"  
- "How can we write a proportion to find the total investment?"  

πŸ”Ή **Try setting it up before I provide hints!**  
"""

    elif step == 11:
        return """πŸ”Ή **Hint 1:**  
"Write the proportion as:  
  \\[
  \\frac{60}{100} = \\frac{1500}{x}
  \\]  
Now, can you **cross-multiply** and solve for **x**?"  
"""

    elif step == 12:
        return """βœ… **Solution:**  
"Using cross-multiplication:  
  \\[
  60x = 1500 \\times 100
  \\]  
  \\[
  x = \\frac{1500 \\times 100}{60} = 2500
  \\]  
So, the total investment by Orrin and Damen together is **$2,500.**"  

πŸ’‘ **Reflection:**  
- "How does solving with an equation compare to visual methods?"  
πŸš€ "Now, let's reflect on teaching strategies!"  
"""

    elif step == 13:
        return """πŸ“Œ **Common Core & Creativity-Directed Practices Discussion**  
"Great job! Now, let’s reflect on how these problems connect to teaching strategies."

πŸ”Ή **Which Common Core Standards did we cover?**  
- **CCSS.MATH.CONTENT.6.RP.A.3** (Solving real-world proportional reasoning problems)  
- **CCSS.MATH.CONTENT.7.RP.A.2** (Recognizing proportional relationships)  
- **CCSS.MATH.PRACTICE.MP1** (Making sense of problems & persevering)  
- **CCSS.MATH.PRACTICE.MP4** (Modeling with mathematics)  

πŸ’‘ **Which of these standards do you think applied most to the problems we solved? Why?**  
"""

    elif step == 14:
        return """πŸ“Œ **Creativity-Directed Practices Discussion**  
"Throughout these problems, we engaged in creativity-directed strategies, such as:  
βœ… Encouraging multiple solution methods  
βœ… Using real-world contexts  
βœ… Thinking critically about proportional relationships  

πŸ’‘ **Which of these strategies did you use while solving the problems?**  
πŸ’‘ **How do you think encouraging creativity helps students develop deeper understanding?**  
"""

    elif step == 15:
        return """πŸ“Œ **Problem-Posing Activity**  
"Now, let’s take it one step further! Try creating your own proportional reasoning problem."  
πŸ’‘ "Would you like to modify one of the previous problems, or create a brand new one?"  
"""

    return "πŸŽ‰ **You've completed the module! Would you like to review anything again?**"