File size: 6,317 Bytes
ce5b5d6
8495abe
c0b79e6
 
3c55449
ff9f2bc
 
 
 
c0b79e6
343c514
 
 
 
6990725
ecf40b2
b1d645b
3c55449
 
8495abe
343c514
 
8495abe
c0b79e6
343c514
 
 
8495abe
ecf40b2
8495abe
3c55449
8495abe
9c9d80d
c0b79e6
b1d645b
c0b79e6
ecf40b2
9c9d80d
 
343c514
6990725
8495abe
3c55449
8495abe
9c9d80d
6990725
 
 
343c514
6990725
8495abe
3c55449
8495abe
6990725
c0b79e6
 
 
 
 
 
6990725
c0b79e6
6990725
c0b79e6
 
 
6990725
c0b79e6
 
 
 
 
 
 
 
 
 
0aad0f1
b1d645b
ecf40b2
 
8495abe
3c55449
ecf40b2
9c9d80d
ecf40b2
8495abe
9c9d80d
 
 
8495abe
c0b79e6
8495abe
3c55449
ecf40b2
9c9d80d
ecf40b2
 
 
3c55449
ecf40b2
8495abe
3c55449
ecf40b2
9c9d80d
c0b79e6
 
 
 
 
 
 
 
 
8495abe
b1d645b
ff9f2bc
ecf40b2
8495abe
3c55449
ecf40b2
9c9d80d
ecf40b2
8495abe
ecf40b2
 
 
0aad0f1
ecf40b2
8495abe
3c55449
ecf40b2
9c9d80d
ecf40b2
8495abe
3c55449
b1d645b
ecf40b2
 
 
8495abe
3c55449
ecf40b2
9c9d80d
c0b79e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8495abe
b1d645b
ecf40b2
 
8495abe
 
ecf40b2
ff9f2bc
 
8495abe
3c55449
 
 
 
 
8495abe
ecf40b2
3c55449
 
ecf40b2
3c55449
ff9f2bc
 
 
 
8495abe
ff9f2bc
 
3c55449
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
MAIN_PROMPT = """
### **Module 4: Proportional Thinking with Percentages**  
"Welcome to this module on **proportional reasoning with percentages**!  
Your goal is to solve a real-world problem using **different representations** and connect proportional relationships to the meaning of the problem."  

๐Ÿ“Œ **Problem:**  
Orrin and Damen decided to invest money in a local ice cream shop. Orrin invests **$1,500**, which is **60%** of their total investment.  
๐Ÿ’ก **How much do they invest together?**  

๐Ÿš€ **Choose a method to solve:**  
1๏ธโƒฃ **Bar Model**  
2๏ธโƒฃ **Double Number Line**  
3๏ธโƒฃ **Equations**  

๐Ÿ’ก **Try solving the problem on your own before I provide guidance!**  
๐Ÿš€ **Which method would you like to use first?**  
"""

def next_step(step):
    if step == 1:
        return """๐Ÿš€ **Step 1: Choose Your Method**  
"Which method would you like to use to solve this problem?"  

๐Ÿ’ก **Select one:**  
- **Bar Model**  
- **Double Number Line**  
- **Equation**  

๐Ÿ”น **Try your best first. I wonโ€™t provide hints until you attempt a solution!**  
"""

    elif step == 2:
        return """๐Ÿš€ **Step 2: Bar Model**  
"Great choice! Letโ€™s use a **bar model**."  

๐Ÿ’ก **Before I provide any hints, describe your approach:**  
- "How would you divide the bar to represent percentages?"  
- "What part of the bar represents Orrinโ€™s investment?"  
- "How would you use this to find the total investment?"  

๐Ÿ”น **Explain your reasoning first! I will guide you if needed.**  
"""

    elif step == 3:
        return """๐Ÿค” **Would you like a hint?**  
๐Ÿ’ก Try thinking about these questions before I give guidance:  
- **How can you divide the bar into equal parts?**  
- **If 60% is $1,500, how much would 10% be?**  

๐Ÿ”น **Try calculating and let me know your reasoning.**  
"""

    elif step == 4:
        return """โœ… **Letโ€™s go through the bar model together.**  

๐Ÿ“Œ **Bar Model Representation**  
Understanding the Problem:  
- Orrin invests **$1,500**, which is **60%** of the total investment.  
- We need to find **100% of the total investment**.  

๐Ÿ“Œ **Setting Up the Bar Model**  
- Draw a **horizontal bar** and divide it into **10 equal parts**.  
- Shade **6 parts** to represent Orrinโ€™s 60% ($1,500).  
- The remaining **4 parts** represent Damenโ€™s investment (40%).  

๐Ÿ“Œ **Calculating the Total Investment**  
Since Orrinโ€™s $1,500 represents **60%**, we can set up the proportion:  
\\[
\\text{Total Investment} = \\frac{1500}{0.6}
\\]  
Solving for total investment:  
\\[
\\text{Total Investment} = 2500
\\]  

๐Ÿ“Œ **Conclusion:**  
The total investment made by Orrin and Damen together is **$2,500**.  

๐Ÿ’ก **Reflection:**  
- "How did the bar model help your understanding?"  
๐Ÿš€ **Would you like to try another method, such as a Double Number Line?**  
"""

    elif step == 5:
        return """๐Ÿš€ **Step 3: Double Number Line**  
"Now, letโ€™s try solving using a **double number line**."  

๐Ÿ’ก **Your turn first:**  
- "How would you set up the number lines?"  
- "What values should go at 0%, 60%, and 100%?"  

๐Ÿ”น **Try setting up the number line first before I provide hints!**  
"""

    elif step == 6:
        return """๐Ÿค” **Need a hint?**  
- **Step 1:** One number line represents **percentages** (0%, 60%, 100%).  
- **Step 2:** The other represents **dollars** ($0, $1,500, total investment).  
- **Step 3:** Find the value of **10%** by dividing **$1,500 by 6**.  

๐Ÿ’ก **What do you think the total investment is?**  
"""

    elif step == 7:
        return """โœ… **Solution Using Double Number Line**  
๐Ÿ“Œ **Double Number Line Representation**  
- Mark key points on two parallel lines:  
  - **0%, 60%, 100%** on one line.  
  - **$0, $1,500, and Total Investment** on the other.  
- Since **$1,500 represents 60%**, divide by **6** to get **10% = $250**.  
- Multiply by **10** to get **100% = $2,500**.  

๐Ÿ“Œ **Conclusion:**  
The total investment is **$2,500**.  

๐Ÿ’ก **Reflection:**  
- "How does this method compare to the bar model?"  
๐Ÿš€ **Would you like to try solving with an **equation**?"  
"""

    elif step == 8:
        return """๐Ÿš€ **Step 4: Equation Method**  
"Now, letโ€™s try setting up an equation to solve this problem."  

๐Ÿ’ก **Your turn first:**  
- "How would you express 60% mathematically?"  
- "How will you set up the equation?"  

๐Ÿ”น **Try writing your equation before I guide you!**  
"""

    elif step == 9:
        return """๐Ÿค” **Would you like a hint?**  
- Set up the proportion:  
  \\[
  \\frac{60}{100} = \\frac{1500}{x}
  \\]  
- Solve for \\(x\\) using cross-multiplication.  

๐Ÿ’ก **What do you get?**  
"""

    elif step == 10:
        return """โœ… **Solution Using an Equation**  
๐Ÿ“Œ **Equation Representation**  
Using a proportion:  
\\[
\\frac{60}{100} = \\frac{1500}{x}
\\]  
Cross-multiply:  
\\[
60x = 1500 \\times 100
\\]  
Divide both sides by **60**:  
\\[
x = 2500
\\]  

๐Ÿ“Œ **Conclusion:**  
The total investment is **$2,500**.  

๐Ÿ’ก **Reflection:**  
- "Which methodโ€”Bar Model, Double Number Line, or Equationโ€”helped you most?"  
๐Ÿš€ **Now, letโ€™s reflect on the **Common Core practices** we used.**  
"""

    elif step == 11:
        return """๐Ÿ“Œ **Common Core Standards Discussion**  
"Great job! Letโ€™s reflect on how this connects to teaching strategies."  

๐Ÿ”น **Which Common Core Standards did we cover?**  
- **CCSS.MATH.CONTENT.6.RP.A.3** (Solving real-world proportional reasoning problems)  
- **CCSS.MATH.CONTENT.7.RP.A.2** (Recognizing proportional relationships)  
- **CCSS.MATH.PRACTICE.MP1** (Making sense of problems & persevering)  
- **CCSS.MATH.PRACTICE.MP4** (Modeling with mathematics)  

๐Ÿ’ก **Which of these standards do you think applied most? Why?**  
"""

    elif step == 12:
        return """๐Ÿ“Œ **Creativity-Directed Practices Discussion**  
"Throughout this module, we engaged in creativity-directed strategies, such as:  
โœ… Using multiple solution methods  
โœ… Encouraging deep reasoning  
โœ… Connecting visual and numerical representations  

๐Ÿ’ก "How do these strategies help students build deeper understanding?"  
๐Ÿš€ "Now, letโ€™s create your own problem!"  
"""

    return "๐ŸŽ‰ **You've completed the module! Would you like to review anything again?**"