File size: 2,004 Bytes
866286c 73b1050 866286c ce5b5d6 73b1050 866286c 73b1050 4910ade 73b1050 4910ade 73b1050 866286c 73b1050 866286c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import os
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from prompts.initial_prompt import INITIAL_PROMPT
from prompts.main_prompt import MAIN_PROMPT, get_prompt_for_method, get_feedback_for_method
# ✅ Load API key from .env file
if os.path.exists(".env"):
load_dotenv(".env")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# ✅ Ensure API Key is available
if not OPENAI_API_KEY:
raise ValueError("🚨 OpenAI API key is missing! Set it in the .env file.")
client = OpenAI(api_key=OPENAI_API_KEY)
# ✅ Chatbot Response Function
def respond(user_message, history):
if not user_message:
return "", history
# ✅ Check if user selected a method
if user_message.lower() in ["bar model", "double number line", "equation"]:
return get_prompt_for_method(user_message), history + [(user_message, get_prompt_for_method(user_message))]
# ✅ Process feedback based on last recorded method
if history and history[-1][0].lower() in ["bar model", "double number line", "equation"]:
selected_method = history[-1][0]
feedback = get_feedback_for_method(selected_method, user_message)
return feedback, history + [(user_message, feedback)]
return "I didn’t understand that. Please select a method first (Bar Model, Double Number Line, or Equation).", history
# ✅ Gradio UI Setup
with gr.Blocks() as demo:
gr.Markdown("## 🤖 AI-Guided Math PD Chatbot")
chatbot = gr.Chatbot(value=[(INITIAL_PROMPT, "")], height=500)
state_history = gr.State([(INITIAL_PROMPT, "")])
user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input")
user_input.submit(
respond,
inputs=[user_input, state_history],
outputs=[user_input, chatbot]
).then(
fn=lambda _, h: h,
inputs=[user_input, chatbot],
outputs=[state_history]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|