File size: 2,004 Bytes
866286c
 
 
 
 
73b1050
866286c
 
 
 
 
 
 
 
 
 
 
 
 
 
ce5b5d6
73b1050
866286c
 
73b1050
 
 
4910ade
73b1050
 
 
 
 
4910ade
73b1050
866286c
 
 
 
 
73b1050
 
866286c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from prompts.initial_prompt import INITIAL_PROMPT
from prompts.main_prompt import MAIN_PROMPT, get_prompt_for_method, get_feedback_for_method

# ✅ Load API key from .env file
if os.path.exists(".env"):
    load_dotenv(".env")

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# ✅ Ensure API Key is available
if not OPENAI_API_KEY:
    raise ValueError("🚨 OpenAI API key is missing! Set it in the .env file.")

client = OpenAI(api_key=OPENAI_API_KEY)

# ✅ Chatbot Response Function
def respond(user_message, history):
    if not user_message:
        return "", history

    # ✅ Check if user selected a method
    if user_message.lower() in ["bar model", "double number line", "equation"]:
        return get_prompt_for_method(user_message), history + [(user_message, get_prompt_for_method(user_message))]

    # ✅ Process feedback based on last recorded method
    if history and history[-1][0].lower() in ["bar model", "double number line", "equation"]:
        selected_method = history[-1][0]
        feedback = get_feedback_for_method(selected_method, user_message)
        return feedback, history + [(user_message, feedback)]

    return "I didn’t understand that. Please select a method first (Bar Model, Double Number Line, or Equation).", history

# ✅ Gradio UI Setup
with gr.Blocks() as demo:
    gr.Markdown("## 🤖 AI-Guided Math PD Chatbot")

    chatbot = gr.Chatbot(value=[(INITIAL_PROMPT, "")], height=500)
    state_history = gr.State([(INITIAL_PROMPT, "")])

    user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input")

    user_input.submit(
        respond,
        inputs=[user_input, state_history],
        outputs=[user_input, chatbot]
    ).then(
        fn=lambda _, h: h,
        inputs=[user_input, chatbot],
        outputs=[state_history]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)