File size: 2,330 Bytes
866286c
 
 
 
 
7b6aaf6
866286c
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6aaf6
73b1050
7b6aaf6
866286c
7b6aaf6
8bcaf24
 
 
7b6aaf6
8bcaf24
7b6aaf6
 
 
 
4910ade
7b6aaf6
 
73b1050
7b6aaf6
 
4910ade
7b6aaf6
866286c
 
 
 
 
0cfa14e
 
7b6aaf6
866286c
 
 
8bcaf24
866286c
 
7b6aaf6
 
866286c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from prompts.initial_prompt import INITIAL_PROMPT
from prompts.main_prompt import get_prompt_for_method, get_feedback_for_method

# βœ… Load API key from .env file
if os.path.exists(".env"):
    load_dotenv(".env")

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# βœ… Ensure API Key is available
if not OPENAI_API_KEY:
    raise ValueError("🚨 OpenAI API key is missing! Set it in the .env file.")

client = OpenAI(api_key=OPENAI_API_KEY)

# βœ… Chatbot Response Function
def respond(user_message, history, selected_method):
    if not user_message:
        return "", history, selected_method

    user_message = user_message.strip().lower()  # Normalize input

    valid_methods = ["bar model", "double number line", "equation"]

    # βœ… If user selects a method, store it and provide the method-specific prompt
    if user_message in valid_methods:
        selected_method = user_message  # Store the method
        method_prompt = get_prompt_for_method(user_message)
        history.append((user_message, method_prompt))  # Save to history
        return method_prompt, history, selected_method

    # βœ… If a method has already been selected, provide feedback
    if selected_method:
        feedback = get_feedback_for_method(selected_method, user_message)
        history.append((user_message, feedback))  # Save user response and feedback
        return feedback, history, selected_method

    return "❌ Please select a method first (Bar Model, Double Number Line, or Equation).", history, selected_method

# βœ… Gradio UI Setup
with gr.Blocks() as demo:
    gr.Markdown("## πŸ€– AI-Guided Math PD Chatbot")

    chatbot = gr.Chatbot(value=[(INITIAL_PROMPT, "")], height=500)
    state_history = gr.State([(INITIAL_PROMPT, "")])
    state_selected_method = gr.State(None)  # βœ… New state to track selected method

    user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input")

    # βœ… Handling user input and response logic
    user_input.submit(
        respond,
        inputs=[user_input, state_history, state_selected_method],
        outputs=[chatbot, state_history, state_selected_method]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)