File size: 5,369 Bytes
ce5b5d6 8495abe b1d645b ff9f2bc 3c55449 ff9f2bc 343c514 ecf40b2 b1d645b 3c55449 8495abe 343c514 8495abe 343c514 8495abe ecf40b2 8495abe 3c55449 8495abe 9c9d80d b1d645b 9c9d80d ecf40b2 9c9d80d 343c514 9c9d80d 8495abe 3c55449 8495abe 9c9d80d ecf40b2 343c514 9c9d80d 8495abe 3c55449 8495abe 9c9d80d ecf40b2 3c55449 ecf40b2 3c55449 ecf40b2 b1d645b 0aad0f1 b1d645b ecf40b2 8495abe 3c55449 ecf40b2 9c9d80d ecf40b2 8495abe 9c9d80d 8495abe 9c9d80d 8495abe 3c55449 ecf40b2 9c9d80d ecf40b2 3c55449 ecf40b2 8495abe 3c55449 ecf40b2 9c9d80d ecf40b2 8495abe b1d645b ff9f2bc ecf40b2 8495abe 3c55449 ecf40b2 9c9d80d ecf40b2 8495abe ecf40b2 0aad0f1 ecf40b2 8495abe 3c55449 ecf40b2 9c9d80d ecf40b2 8495abe 3c55449 b1d645b ecf40b2 8495abe 3c55449 ecf40b2 9c9d80d ecf40b2 b1d645b 3c55449 b1d645b ecf40b2 8495abe ecf40b2 b1d645b 8495abe b1d645b ecf40b2 8495abe ecf40b2 ff9f2bc 8495abe 3c55449 8495abe ecf40b2 3c55449 ecf40b2 3c55449 ff9f2bc 8495abe ff9f2bc 3c55449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
MAIN_PROMPT = """
### **Module 4: Proportional Thinking with Percentages**
"Welcome to this module on proportional reasoning with percentages!
Your task is to **solve a problem using different representations** and connect the proportional relationship to the meaning of the problem."
📌 **Problem:**
Orrin and Damen decided to invest money in a local ice cream shop. Orrin invests **$1,500**, which is **60%** of their total investment.
💡 **How much do they invest together?**
✅ **Choose a method to solve:**
1️⃣ **Bar Model**
2️⃣ **Double Number Line**
3️⃣ **Equations**
💡 **Try solving the problem first before I provide guidance!**
🚀 **Which method would you like to use first?**
"""
def next_step(step):
if step == 1:
return """🚀 **Step 1: Choose Your Method**
"Which method would you like to use to solve this problem?"
💡 **Select one method:**
- **Bar Model**
- **Double Number Line**
- **Equation**
🔹 **Try your best first. I won’t provide hints until you attempt a solution!**
"""
elif step == 2:
return """🚀 **Step 2: Bar Model**
"Great choice! Let’s start with a bar model."
💡 **Before I help, describe how you would approach it:**
- "How would you divide the bar to represent percentages?"
- "What part of the bar represents Orrin’s investment?"
- "How would you use this to find the total investment?"
🔹 **Explain your reasoning first!**
"""
elif step == 3:
return """🤔 **Would you like a hint?**
- **Step 1:** Draw a bar divided into **10 equal parts** (each representing 10%).
- **Step 2:** Since **60% = $1,500**, shade in 6 parts of the bar.
- **Step 3:** How much is **1 part** worth?
💡 **Let me know your thinking before I continue!**
"""
elif step == 4:
return """✅ **Solution Using Bar Model**
"Let’s confirm the answer together!"
- Each 10% part of the bar represents **$250** because:
\\[
\\frac{1500}{6} = 250
\\]
- Since **100% = 10 parts**, multiplying by 10 gives:
\\[
\\text{Total Investment} = 250 \\times 10 = 2500
\\]
💡 **Reflection:**
- "How did the bar model help your understanding?"
🚀 **Would you like to try another method, such as a Double Number Line?**
"""
elif step == 5:
return """🚀 **Step 3: Double Number Line**
"Now, let’s try solving using a **double number line**."
💡 **Your turn first:**
- "How would you set up the number lines?"
- "What values should go at 0%, 60%, and 100%?"
🔹 **Try it first before I provide hints!**
"""
elif step == 6:
return """🤔 **Need a hint?**
- **Step 1:** One number line represents **percentages** (0%, 60%, 100%).
- **Step 2:** The other represents **dollars** ($0, $1,500, total investment).
- **Step 3:** Find the value of **10%** by dividing **$1,500 by 6**.
💡 **What do you think the total investment is?**
"""
elif step == 7:
return """✅ **Solution Using Double Number Line**
"Let’s confirm your answer step by step!"
- **10% = $250**
- **100% = $2,500**
💡 **Reflection:**
- "How does this method compare to the bar model?"
🚀 **Would you like to try solving with an **equation**?"
"""
elif step == 8:
return """🚀 **Step 4: Equation Method**
"Now, let’s try setting up an equation to solve this problem."
💡 **Your turn first:**
- "How would you express 60% mathematically?"
- "How will you set up the equation?"
🔹 **Try writing your equation before I guide you!**
"""
elif step == 9:
return """🤔 **Would you like a hint?**
- Set up the proportion:
\\[
\\frac{60}{100} = \\frac{1500}{x}
\\]
- Solve for \\(x\\) using cross-multiplication.
💡 **What do you get?**
"""
elif step == 10:
return """✅ **Solution Using an Equation**
"Let’s solve step by step!"
- Using cross-multiplication:
\\[
60x = 1500 \\times 100
\\]
- Divide both sides by **60**:
\\[
x = 2500
\\]
💡 **Reflection:**
- "Which method—Bar Model, Double Number Line, or Equation—helped you most?"
🚀 **Now, let’s reflect on the **Common Core practices** we used.**
"""
elif step == 11:
return """📌 **Common Core Standards Discussion**
"Great job! Let’s reflect on how this connects to teaching strategies."
🔹 **Which Common Core Standards did we cover?**
- **CCSS.MATH.CONTENT.6.RP.A.3** (Solving real-world proportional reasoning problems)
- **CCSS.MATH.CONTENT.7.RP.A.2** (Recognizing proportional relationships)
- **CCSS.MATH.PRACTICE.MP1** (Making sense of problems & persevering)
- **CCSS.MATH.PRACTICE.MP4** (Modeling with mathematics)
💡 **Which of these standards do you think applied most? Why?**
"""
elif step == 12:
return """📌 **Creativity-Directed Practices Discussion**
"Throughout this module, we engaged in creativity-directed strategies, such as:
✅ Using multiple solution methods
✅ Encouraging deep reasoning
✅ Connecting visual and numerical representations
💡 "How do these strategies help students build deeper understanding?"
🚀 "Now, let’s create your own problem!"
"""
return "🎉 **You've completed the module! Would you like to review anything again?**"
|