File size: 3,333 Bytes
72068ec
866286c
 
 
 
 
3538cf5
866286c
 
 
 
 
 
 
 
 
 
 
 
 
46431bd
7b6aaf6
73b1050
46431bd
866286c
7b6aaf6
8bcaf24
 
 
46431bd
caf5169
 
 
 
46431bd
 
 
 
72068ec
7b6aaf6
8bcaf24
7b6aaf6
 
46431bd
 
 
 
 
7b6aaf6
4910ade
7b6aaf6
 
73b1050
46431bd
 
 
 
 
7b6aaf6
4910ade
caf5169
3538cf5
46431bd
 
 
 
3538cf5
866286c
 
 
 
 
caf5169
 
7b6aaf6
866286c
 
 
8bcaf24
866286c
 
7b6aaf6
 
866286c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

import os
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from prompts.initial_prompt import INITIAL_PROMPT
from prompts.main_prompt import MAIN_PROMPT, get_prompt_for_method, get_feedback_for_method

# βœ… Load API key from .env file
if os.path.exists(".env"):
    load_dotenv(".env")

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

# βœ… Ensure API Key is available
if not OPENAI_API_KEY:
    raise ValueError("🚨 OpenAI API key is missing! Set it in the .env file.")

client = OpenAI(api_key=OPENAI_API_KEY)

# βœ… Chatbot Response Function with Full Debugging
def respond(user_message, history, selected_method):
    if not user_message:
        return "❌ No input received.", history, selected_method

    user_message = user_message.strip().lower()  # Normalize input

    valid_methods = ["bar model", "double number line", "equation"]

    # βœ… Ensure history is a list of tuples
    if not isinstance(history, list):
        history = []
    history = [(str(h[0]), str(h[1])) for h in history if isinstance(h, tuple) and len(h) == 2]

    # βœ… Debug Logs
    print("\nDEBUG: Incoming User Message:", user_message)
    print("DEBUG: Current History:", history)
    print("DEBUG: Selected Method Before Processing:", selected_method)

    # βœ… If user selects a method, store it and provide the method-specific prompt
    if user_message in valid_methods:
        selected_method = user_message  # Store the method
        method_prompt = get_prompt_for_method(user_message)
        history.append((user_message, method_prompt))  # Store correctly formatted tuple

        print("DEBUG: Method Selected:", selected_method)
        print("DEBUG: Sending Prompt for Method:", method_prompt)

        return method_prompt, history, selected_method

    # βœ… If a method has already been selected, provide feedback
    if selected_method:
        feedback = get_feedback_for_method(selected_method, user_message)
        history.append((user_message, feedback))  # Store correctly formatted tuple

        print("DEBUG: Feedback Given:", feedback)
        print("DEBUG: Updated History:", history)

        return feedback, history, selected_method

    # βœ… Ensure chatbot always responds with a valid tuple
    error_msg = "❌ Please select a method first (Bar Model, Double Number Line, or Equation)."
    history.append((user_message, error_msg))  # Store correctly formatted tuple

    print("DEBUG: Error Triggered, No Method Selected")

    return error_msg, history, selected_method

# βœ… Gradio UI Setup
with gr.Blocks() as demo:
    gr.Markdown("## πŸ€– AI-Guided Math PD Chatbot")

    chatbot = gr.Chatbot(value=[(INITIAL_PROMPT, "Hello! Please select a method to begin.")], height=500)
    state_history = gr.State([(INITIAL_PROMPT, "Hello! Please select a method to begin.")])
    state_selected_method = gr.State(None)  # βœ… New state to track selected method

    user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input")

    # βœ… Handling user input and response logic
    user_input.submit(
        respond,
        inputs=[user_input, state_history, state_selected_method],
        outputs=[chatbot, state_history, state_selected_method]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)