File size: 6,127 Bytes
ce5b5d6
8495abe
b1d645b
ff9f2bc
3c55449
ff9f2bc
 
 
 
 
 
 
 
 
b1d645b
3c55449
 
8495abe
 
ff9f2bc
8495abe
ff9f2bc
 
 
 
8495abe
ff9f2bc
8495abe
3c55449
8495abe
 
ff9f2bc
 
 
b1d645b
ff9f2bc
8495abe
3c55449
8495abe
 
ff9f2bc
 
b1d645b
 
 
 
8495abe
3c55449
8495abe
3c55449
 
 
 
 
 
 
 
 
8495abe
ff9f2bc
3c55449
b1d645b
 
 
 
0aad0f1
b1d645b
 
 
8495abe
 
3c55449
 
 
ff9f2bc
8495abe
ff9f2bc
 
 
 
8495abe
ff9f2bc
8495abe
3c55449
 
8495abe
ff9f2bc
 
 
3c55449
ff9f2bc
8495abe
3c55449
 
8495abe
ff9f2bc
3c55449
ff9f2bc
3c55449
ff9f2bc
 
8495abe
3c55449
 
8495abe
ff9f2bc
 
 
 
 
8495abe
b1d645b
ff9f2bc
 
 
8495abe
3c55449
 
 
ff9f2bc
8495abe
ff9f2bc
 
 
 
0aad0f1
ff9f2bc
8495abe
3c55449
 
8495abe
ff9f2bc
8495abe
3c55449
b1d645b
ff9f2bc
8495abe
3c55449
 
ff9f2bc
 
b1d645b
3c55449
b1d645b
ff9f2bc
 
 
 
 
 
8495abe
3c55449
b1d645b
ff9f2bc
8495abe
b1d645b
ff9f2bc
 
 
8495abe
 
ff9f2bc
 
 
8495abe
3c55449
 
 
 
 
8495abe
ff9f2bc
3c55449
 
ff9f2bc
3c55449
ff9f2bc
 
 
 
8495abe
ff9f2bc
 
3c55449
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
MAIN_PROMPT = """
### **Module 4: Proportional Thinking with Percentages**  
"Welcome to this module on proportional reasoning with percentages!  
Your task is to **solve a problem using different representations** and connect the proportional relationship to the meaning of the problem."  

πŸ“Œ **Problem:**  
Orrin and Damen decided to invest money in a local ice cream shop. Orrin invests **$1,500**, which is **60%** of their total investment.  
πŸ’‘ **How much do they invest together?**  
πŸ’‘ **Solve using a Bar Model, Double Number Line, or Equations.**  

βœ… **Remember:**  
- "Explain your thought process after solving each part."  
- "Try your best before I give hints!"  
πŸš€ **Let’s begin! Which method would you like to use first?**  
"""

def next_step(step):
    if step == 1:
        return """πŸš€ **Step 1: Solve Using a Bar Model**  
"How can we use a **bar model** to solve this problem?"  

πŸ’‘ **OK! Let's hear your ideas first.**  
- "What does the full bar represent?"  
- "How might we divide the bar to show 60%?"  
- "How can this help us find the total investment?"  

πŸ”Ή **Share your thinking before I provide any hints!**  
"""

    elif step == 2:
        return """πŸ”Ή **Hint 1:**  
"Try drawing a **bar to represent the total investment**.  
- Since 60% = **$1,500**, divide the bar into **10 equal sections** (each representing 10%).  
- Shade in **6 sections** to represent Orrin’s 60%.  

Does this setup make sense to you?"  
"""

    elif step == 3:
        return """πŸ”Ή **Hint 2:**  
"Now, let’s determine the value of one part.  
- Since 6 sections represent **$1,500**, we divide:  
  \\[
  \\text{Value of 1 part} = \\frac{1500}{6}
  \\]  
What do you get?"  
"""

    elif step == 4:
        return """πŸ”Ή **Hint 3:**  
"Now that we know the value of **one part**, we can find the total investment by multiplying by 10:  
  \\[
  \\text{Total Investment} = \\text{Value of 1 part} \\times 10
  \\]  
Can you calculate and explain your answer?"  
"""

    elif step == 5:
        return """βœ… **Solution:**  
"Nice work! You found that **1 part = $250**.  
Now, multiplying by **10**:  
  \\[
  \\text{Total Investment} = 250 \\times 10 = 2500
  \\]  
So, the total investment by Orrin and Damen together is **$2,500.**"  

πŸ’‘ **Reflection:**  
- "How does this visual help in understanding the problem?"  
- "Would this be useful for students struggling with percentages?"  
πŸš€ "Now, let's solve this problem using a **double number line!**"  
"""

    elif step == 6:
        return """πŸš€ **Step 2: Solve Using a Double Number Line**  
"How can a **double number line** help solve this problem?"  

πŸ’‘ **OK! Let's hear your ideas first.**  
- "What should the two number lines represent?"  
- "What key points should we label on the number lines?"  
- "How can we use this to find the total investment?"  

πŸ”Ή **Try before I give hints!**  
"""

    elif step == 7:
        return """πŸ”Ή **Hint 1:**  
"Start by labeling the number lines:  
- One represents **percentages**: **0%, 60%, and 100%**.  
- The other represents **dollars**: **$0, $1,500, and the total investment**.  

What values go in between?"  
"""

    elif step == 8:
        return """πŸ”Ή **Hint 2:**  
"Now, divide $1,500 by 6 to find 10%:  
  \\[
  \\text{Value of 10\\%} = \\frac{1500}{6} = 250
  \\]  
Align this with **10% on the number line.**  
Now, what is the value at 100%?"  
"""

    elif step == 9:
        return """βœ… **Solution:**  
"Now that we’ve aligned the values:  
  - 10% = **$250**  
  - 100% = **$2500**  

So, the total investment is **$2,500!**  

πŸ’‘ **Reflection:**  
- "How does this method compare to the bar model?"  
- "Would this approach help students struggling with percentages?"  
πŸš€ "Now, let's try solving with an **equation!**"  
"""

    elif step == 10:
        return """πŸš€ **Step 3: Solve Using an Equation**  
"How can we set up an **equation** to represent this problem?"  

πŸ’‘ **OK! Let's hear your ideas first.**  
- "What proportional relationship can we write?"  
- "How can we express 60% mathematically?"  
- "What unknown are we solving for?"  

πŸ”Ή **Try setting up the equation before I provide hints!**  
"""

    elif step == 11:
        return """πŸ”Ή **Hint 1:**  
"Write the relationship as a proportion:  
  \\[
  \\frac{60}{100} = \\frac{1500}{x}
  \\]  
How can we solve for \\(x\\)?"  
"""

    elif step == 12:
        return """πŸ”Ή **Hint 2:**  
"Use **cross-multiplication**:  
  \\[
  60x = 1500 \\times 100
  \\]  
Now divide both sides by 60. What do you get?"  
"""

    elif step == 13:
        return """βœ… **Solution:**  
"Nice work! Solving the equation:  
  \\[
  x = \\frac{1500 \\times 100}{60} = 2500
  \\]  
So, the total investment is **$2,500!**  

πŸ’‘ **Reflection:**  
- "Which method do you prefer: Bar Model, Double Number Line, or Equation?"  
- "How can we help students connect all three approaches?"  
πŸš€ "Now, let’s reflect on the **Common Core practices** we used."  
"""

    elif step == 14:
        return """πŸ“Œ **Common Core Standards Discussion**  
"Great job! Let’s reflect on how this connects to teaching strategies."  

πŸ”Ή **Which Common Core Standards did we cover?**  
- **CCSS.MATH.CONTENT.6.RP.A.3** (Solving real-world proportional reasoning problems)  
- **CCSS.MATH.CONTENT.7.RP.A.2** (Recognizing proportional relationships)  
- **CCSS.MATH.PRACTICE.MP1** (Making sense of problems & persevering)  
- **CCSS.MATH.PRACTICE.MP4** (Modeling with mathematics)  

πŸ’‘ "Which of these standards do you think applied most? Why?"  
"""

    elif step == 15:
        return """πŸ“Œ **Creativity-Directed Practices Discussion**  
"Throughout this module, we engaged in creativity-directed strategies, such as:  
βœ… Using multiple solution methods  
βœ… Encouraging deep reasoning  
βœ… Connecting visual and numerical representations  

πŸ’‘ "How do these strategies help students build deeper understanding?"  
πŸš€ "Now, let’s create your own problem!"  
"""

    return "πŸŽ‰ **You've completed the module! Would you like to review anything again?**"