import os import gradio as gr from dotenv import load_dotenv from openai import OpenAI from prompts.initial_prompt import INITIAL_PROMPT from prompts.main_prompt import MAIN_PROMPT, get_prompt_for_method, get_feedback_for_method # ✅ Load API key from .env file if os.path.exists(".env"): load_dotenv(".env") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # ✅ Ensure API Key is available if not OPENAI_API_KEY: raise ValueError("🚨 OpenAI API key is missing! Set it in the .env file.") client = OpenAI(api_key=OPENAI_API_KEY) # ✅ Chatbot Response Function with Debugging def respond(user_message, history, selected_method): if not user_message: return "", history, selected_method user_message = user_message.strip().lower() # Normalize input valid_methods = ["bar model", "double number line", "equation"] # ✅ Ensure history is a list of strictly two-element tuples if not isinstance(history, list): history = [] # ✅ Convert all history elements to strings and tuples if necessary history = [(str(h[0]), str(h[1])) for h in history if isinstance(h, tuple) and len(h) == 2] print("\nDEBUG: Current History:", history) # 🛠 Debugging step # ✅ If user selects a method, store it and provide the method-specific prompt if user_message in valid_methods: selected_method = user_message # Store the method method_prompt = get_prompt_for_method(user_message) history.append((user_message, method_prompt)) # Ensure correct format print("\nDEBUG: Method Selected:", selected_method) # 🛠 Debugging return method_prompt, history, selected_method # ✅ If a method has already been selected, provide feedback if selected_method: feedback = get_feedback_for_method(selected_method, user_message) history.append((user_message, feedback)) # Ensure correct format print("\nDEBUG: Providing Feedback:", feedback) # 🛠 Debugging return feedback, history, selected_method # ✅ Ensure chatbot always responds with a valid tuple error_msg = "❌ Please select a method first (Bar Model, Double Number Line, or Equation)." history.append((user_message, error_msg)) # Ensure correct format print("\nDEBUG: Error Message Triggered") # 🛠 Debugging return error_msg, history, selected_method # ✅ Gradio UI Setup with gr.Blocks() as demo: gr.Markdown("## 🤖 AI-Guided Math PD Chatbot") chatbot = gr.Chatbot(value=[(INITIAL_PROMPT, "Hello! Please select a method to begin.")], height=500) state_history = gr.State([(INITIAL_PROMPT, "Hello! Please select a method to begin.")]) state_selected_method = gr.State(None) # ✅ New state to track selected method user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input") # ✅ Handling user input and response logic user_input.submit( respond, inputs=[user_input, state_history, state_selected_method], outputs=[chatbot, state_history, state_selected_method] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)