alibicer's picture
Update app.py
4ff02b9 verified
raw
history blame
3.95 kB
import os
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from prompts.initial_prompt import INITIAL_PROMPT
from prompts.main_prompt import MAIN_PROMPT
# Load OpenAI API Key from .env file
if os.path.exists(".env"):
load_dotenv(".env")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=OPENAI_API_KEY)
def gpt_call(history, user_message,
model="gpt-4o-mini",
max_tokens=1024,
temperature=0.7,
top_p=0.95):
"""
Calls OpenAI Chat API to generate responses.
- history: [(user_text, assistant_text), ...]
- user_message: latest message from user
"""
messages = [{"role": "system", "content": MAIN_PROMPT}]
# Add conversation history
for user_text, assistant_text in history:
if user_text:
messages.append({"role": "user", "content": user_text})
if assistant_text:
messages.append({"role": "assistant", "content": assistant_text})
messages.append({"role": "user", "content": user_message})
# OpenAI API Call
completion = client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p
)
response = completion.choices[0].message.content
# Encourage teachers to explain their reasoning before providing guidance
if "solve" in user_message.lower() or "explain" in user_message.lower():
response = "Great! Before we move forward, can you explain your reasoning? Why do you think this is the right approach? Once you share your thoughts, I'll guide you further.\n\n" + response
# Encourage problem posing
if "pose a problem" in user_message.lower():
response += "\n\nNow that you've explored this concept, try creating your own problem related to it. How would you challenge your students?"
# Cover Common Core practice standards
if "common core" in user_message.lower():
response += "\n\nHow do you see this aligning with Common Core practice standards? Can you identify any specific standards this connects to?"
# Encourage creativity-directed practices
if "creativity" in user_message.lower():
response += "\n\nHow did creativity play a role in this problem-solving process? Did you find any opportunities to think differently?"
# Provide structured summary
if "summary" in user_message.lower():
response += "\n\nSummary: Today, we explored problem-solving strategies, reflected on reasoning, and connected ideas to teaching practices. We examined key characteristics of proportional and non-proportional relationships, explored their graphical representations, and considered pedagogical approaches. Keep thinking about how these concepts can be applied in your own classroom!"
return response
def respond(user_message, history):
"""
Handles user input and chatbot responses.
"""
if not user_message:
return "", history
assistant_reply = gpt_call(history, user_message)
history.append((user_message, assistant_reply))
return "", history
##############################
# Gradio Blocks UI
##############################
with gr.Blocks() as demo:
gr.Markdown("## AI-Guided Math PD Chatbot")
chatbot = gr.Chatbot(
value=[("", INITIAL_PROMPT)],
height=600
)
state_history = gr.State([("", INITIAL_PROMPT)])
user_input = gr.Textbox(
placeholder="Type your message here...",
label="Your Input"
)
user_input.submit(
respond,
inputs=[user_input, state_history],
outputs=[user_input, chatbot]
).then(
fn=lambda _, h: h,
inputs=[user_input, chatbot],
outputs=[state_history]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)