|
import os |
|
import gradio as gr |
|
from dotenv import load_dotenv |
|
from openai import OpenAI |
|
from prompts.initial_prompt import INITIAL_PROMPT |
|
from prompts.main_prompt import MAIN_PROMPT |
|
|
|
|
|
if os.path.exists(".env"): |
|
load_dotenv(".env") |
|
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
client = OpenAI(api_key=OPENAI_API_KEY) |
|
|
|
def gpt_call(history, user_message, |
|
model="gpt-4o-mini", |
|
max_tokens=1024, |
|
temperature=0.7, |
|
top_p=0.95): |
|
""" |
|
Calls OpenAI Chat API to generate responses. |
|
- history: [(user_text, assistant_text), ...] |
|
- user_message: latest message from user |
|
""" |
|
messages = [{"role": "system", "content": MAIN_PROMPT}] |
|
|
|
|
|
for user_text, assistant_text in history: |
|
if user_text: |
|
messages.append({"role": "user", "content": user_text}) |
|
if assistant_text: |
|
messages.append({"role": "assistant", "content": assistant_text}) |
|
|
|
messages.append({"role": "user", "content": user_message}) |
|
|
|
|
|
completion = client.chat.completions.create( |
|
model=model, |
|
messages=messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p |
|
) |
|
|
|
response = completion.choices[0].message.content |
|
|
|
|
|
if "solve" in user_message.lower() or "explain" in user_message.lower(): |
|
response = "Great! Before we move forward, can you explain your reasoning? Why do you think this is the right approach? Once you share your thoughts, I'll guide you further.\n\n" + response |
|
|
|
|
|
if "pose a problem" in user_message.lower(): |
|
response += "\n\nNow that you've explored this concept, try creating your own problem related to it. How would you challenge your students?" |
|
|
|
|
|
if "common core" in user_message.lower(): |
|
response += "\n\nHow do you see this aligning with Common Core practice standards? Can you identify any specific standards this connects to?" |
|
|
|
|
|
if "creativity" in user_message.lower(): |
|
response += "\n\nHow did creativity play a role in this problem-solving process? Did you find any opportunities to think differently?" |
|
|
|
|
|
if "summary" in user_message.lower(): |
|
response += "\n\nSummary: Today, we explored problem-solving strategies, reflected on reasoning, and connected ideas to teaching practices. We examined key characteristics of proportional and non-proportional relationships, explored their graphical representations, and considered pedagogical approaches. Keep thinking about how these concepts can be applied in your own classroom!" |
|
|
|
return response |
|
|
|
def respond(user_message, history): |
|
""" |
|
Handles user input and chatbot responses. |
|
""" |
|
if not user_message: |
|
return "", history |
|
|
|
assistant_reply = gpt_call(history, user_message) |
|
history.append((user_message, assistant_reply)) |
|
return "", history |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## AI-Guided Math PD Chatbot") |
|
|
|
chatbot = gr.Chatbot( |
|
value=[("", INITIAL_PROMPT)], |
|
height=600 |
|
) |
|
|
|
state_history = gr.State([("", INITIAL_PROMPT)]) |
|
|
|
user_input = gr.Textbox( |
|
placeholder="Type your message here...", |
|
label="Your Input" |
|
) |
|
|
|
user_input.submit( |
|
respond, |
|
inputs=[user_input, state_history], |
|
outputs=[user_input, chatbot] |
|
).then( |
|
fn=lambda _, h: h, |
|
inputs=[user_input, chatbot], |
|
outputs=[state_history] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) |
|
|