import os import gradio as gr from dotenv import load_dotenv from openai import OpenAI from prompts.initial_prompt import INITIAL_PROMPT from prompts.main_prompt import MAIN_PROMPT # Load API key from .env file if os.path.exists(".env"): load_dotenv(".env") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) def gpt_call(history, user_message, model="gpt-4o-mini", max_tokens=512, temperature=0.7, top_p=0.95): """ Calls OpenAI API to generate a response based on conversation history. - history: [(user_text, assistant_text), ...] - user_message: The latest user input """ messages = [{"role": "system", "content": MAIN_PROMPT}] for user_text, assistant_text in history: if user_text: messages.append({"role": "user", "content": user_text}) if assistant_text: messages.append({"role": "assistant", "content": assistant_text}) messages.append({"role": "user", "content": user_message}) completion = client.chat.completions.create( model=model, messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) return completion.choices[0].message.content def respond(user_message, history): """ Handles chatbot responses. - Ensures teachers must explain their reasoning before AI provides hints or feedback. - Guides the conversation to include CCSS practice standards, problem-posing, creativity-directed practices, and summary. """ if not user_message: return "", history # Extract the last interaction last_message = history[-1][0] if history else "" if "problem" in last_message.lower() and "solve" in last_message.lower(): # If the bot is expecting an explanation, store the response and move forward history.append((user_message, "Thanks for sharing your reasoning! Let's analyze your response.")) else: # Regular OpenAI GPT response assistant_reply = gpt_call(history, user_message) history.append((user_message, assistant_reply)) return "", history ############################## # Gradio Blocks UI ############################## with gr.Blocks() as demo: gr.Markdown("## AI-Guided Math PD Chatbot") chatbot = gr.Chatbot( value=[("", INITIAL_PROMPT)], height=500 ) state_history = gr.State([("", INITIAL_PROMPT)]) user_input = gr.Textbox( placeholder="Type your message here...", label="Your Input" ) user_input.submit( respond, inputs=[user_input, state_history], outputs=[user_input, chatbot] ).then( fn=lambda _, h: h, inputs=[user_input, chatbot], outputs=[state_history] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)