import os import gradio as gr from dotenv import load_dotenv from openai import OpenAI from prompts.initial_prompt import INITIAL_PROMPT from prompts.main_prompt import ( MAIN_PROMPT, get_prompt_for_problem, get_ccss_practice_standards, get_problem_posing_task, get_creativity_discussion, get_summary, ) # Load API key from .env file if os.path.exists(".env"): load_dotenv(".env") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) def gpt_call(history, user_message, model="gpt-4o-mini", max_tokens=512, temperature=0.7, top_p=0.95): """ Calls OpenAI Chat API to generate responses. - history: [(user_text, assistant_text), ...] - user_message: latest message from user """ messages = [{"role": "system", "content": MAIN_PROMPT}] # Add history to conversation for user_text, assistant_text in history: if user_text: messages.append({"role": "user", "content": user_text}) if assistant_text: messages.append({"role": "assistant", "content": assistant_text}) messages.append({"role": "user", "content": user_message}) completion = client.chat.completions.create( model=model, messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) return completion.choices[0].message.content def respond(user_message, history): """ Handles user input and chatbot responses. - user_message: latest user input - history: previous chat history """ if not user_message: return "", history # If user selects a problem number, redirect to the appropriate prompt if user_message.strip() in ["1", "2", "3"]: assistant_reply = get_prompt_for_problem(user_message.strip()) # If user is at reflection stage, ask about CCSS Practice Standards elif user_message.lower().strip() == "common core": assistant_reply = get_ccss_practice_standards() # If user is at problem-posing stage, ask them to create a new problem elif user_message.lower().strip() == "problem posing": assistant_reply = get_problem_posing_task() # If user is at creativity discussion stage, ask for their thoughts elif user_message.lower().strip() == "creativity": assistant_reply = get_creativity_discussion() # If user requests a summary, provide the final learning summary elif user_message.lower().strip() == "summary": assistant_reply = get_summary() else: # Continue conversation normally with AI guidance assistant_reply = gpt_call(history, user_message) # Update history history.append((user_message, assistant_reply)) return "", history ############################## # Gradio UI Setup ############################## with gr.Blocks() as demo: gr.Markdown("## AI-Guided Math PD Chatbot") # Initialize chatbot with first message chatbot = gr.Chatbot( value=[("", INITIAL_PROMPT)], # Initial system message height=500 ) # Maintain chat history state state_history = gr.State([("", INITIAL_PROMPT)]) # User input box user_input = gr.Textbox( placeholder="Type your message here...", label="Your Input" ) # Submit button user_input.submit( respond, inputs=[user_input, state_history], outputs=[user_input, chatbot] ).then( fn=lambda _, h: h, inputs=[user_input, chatbot], outputs=[state_history] ) # Launch app if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)