import os import gradio as gr from dotenv import load_dotenv from openai import OpenAI from prompts.initial_prompt import INITIAL_PROMPT from prompts.main_prompt import MAIN_PROMPT # Load OpenAI API Key from .env file if os.path.exists(".env"): load_dotenv(".env") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) def gpt_call(history, user_message, model="gpt-4o-mini", max_tokens=1024, temperature=0.7, top_p=0.95): """ Calls OpenAI Chat API to generate responses. - history: [(user_text, assistant_text), ...] - user_message: latest message from user """ messages = [{"role": "system", "content": MAIN_PROMPT}] # Add conversation history for user_text, assistant_text in history: if user_text: messages.append({"role": "user", "content": user_text}) if assistant_text: messages.append({"role": "assistant", "content": assistant_text}) messages.append({"role": "user", "content": user_message}) # OpenAI API Call completion = client.chat.completions.create( model=model, messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) response = completion.choices[0].message.content # Encourage teachers to explain their reasoning before providing guidance if "solve" in user_message.lower() or "explain" in user_message.lower(): response = "Great! Before we move forward, can you explain your reasoning? Why do you think this is the right approach? Once you share your thoughts, I'll guide you further.\n\n" + response # Encourage problem posing if "pose a problem" in user_message.lower(): response += "\n\nNow that you've explored this concept, try creating your own problem related to it. How would you challenge your students?" # Cover Common Core practice standards if "common core" in user_message.lower(): response += "\n\nHow do you see this aligning with Common Core practice standards? Can you identify any specific standards this connects to?" # Encourage creativity-directed practices if "creativity" in user_message.lower(): response += "\n\nHow did creativity play a role in this problem-solving process? Did you find any opportunities to think differently?" # Provide structured summary if "summary" in user_message.lower(): response += "\n\nSummary: Today, we explored problem-solving strategies, reflected on reasoning, and connected ideas to teaching practices. We examined key characteristics of proportional and non-proportional relationships, explored their graphical representations, and considered pedagogical approaches. Keep thinking about how these concepts can be applied in your own classroom!" return response def respond(user_message, history): """ Handles user input and chatbot responses. """ if not user_message: return "", history assistant_reply = gpt_call(history, user_message) history.append((user_message, assistant_reply)) return "", history ############################## # Gradio Blocks UI ############################## with gr.Blocks() as demo: gr.Markdown("## AI-Guided Math PD Chatbot") chatbot = gr.Chatbot( value=[("", INITIAL_PROMPT)], height=600 ) state_history = gr.State([("", INITIAL_PROMPT)]) user_input = gr.Textbox( placeholder="Type your message here...", label="Your Input" ) user_input.submit( respond, inputs=[user_input, state_history], outputs=[user_input, chatbot] ).then( fn=lambda _, h: h, inputs=[user_input, chatbot], outputs=[state_history] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)