import os import gradio as gr from dotenv import load_dotenv from openai import OpenAI from prompts.initial_prompt import INITIAL_PROMPT from prompts.main_prompt import MAIN_PROMPT # Load OpenAI API Key from .env file if os.path.exists(".env"): load_dotenv(".env") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) def gpt_call(history, user_message, model="gpt-4o-mini", max_tokens=1024, temperature=0.7, top_p=0.95): messages = [{"role": "system", "content": MAIN_PROMPT}] for user_text, assistant_text in history: if user_text: messages.append({"role": "user", "content": user_text}) if assistant_text: messages.append({"role": "assistant", "content": assistant_text}) messages.append({"role": "user", "content": user_message}) completion = client.chat.completions.create(model=model, messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p) return completion.choices[0].message.content def respond(user_message, history): if not user_message: return "", history assistant_reply = gpt_call(history, user_message) history.append((user_message, assistant_reply)) return "", history with gr.Blocks() as demo: gr.Markdown("## AI-Guided Math PD Chatbot") chatbot = gr.Chatbot(value=[("", INITIAL_PROMPT)], height=600) state_history = gr.State([("", INITIAL_PROMPT)]) user_input = gr.Textbox(placeholder="Type your message here...", label="Your Input") user_input.submit(respond, inputs=[user_input, state_history], outputs=[user_input, chatbot]).then(fn=lambda _, h: h, inputs=[user_input, chatbot], outputs=[state_history]) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)