Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from dotenv import load_dotenv | |
from openai import OpenAI | |
from prompts.initial_prompt import INITIAL_PROMPT | |
from prompts.main_prompt import TASK_PROMPT | |
# Load the OpenAI API key from .env file | |
if os.path.exists(".env"): | |
load_dotenv(".env") | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
client = OpenAI(api_key=OPENAI_API_KEY) | |
def gpt_call(history, user_message, | |
model="gpt-4o-mini", | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95): | |
""" | |
Calls OpenAI's ChatCompletion API to generate responses. | |
- history: [(user_text, assistant_text), ...] | |
- user_message: User's latest input | |
""" | |
# System message (TASK_PROMPT) at the beginning | |
messages = [{"role": "system", "content": TASK_PROMPT}] | |
# Convert history into OpenAI format | |
for user_text, assistant_text in history: | |
if user_text: | |
messages.append({"role": "user", "content": user_text}) | |
if assistant_text: | |
messages.append({"role": "assistant", "content": assistant_text}) | |
# Add the latest user input | |
messages.append({"role": "user", "content": user_message}) | |
# AI-controlled gradual guidance | |
if "bar model" in user_message.lower(): | |
return "Great! You've started using a bar model. Can you explain how you divided it? What does each section represent?" | |
elif "double number line" in user_message.lower(): | |
return "Nice! How does your number line show the relationship between time and distance? Did you mark the correct intervals?" | |
elif "ratio table" in user_message.lower(): | |
return "Good choice! Before I check, how did you determine the ratio for 1 hour?" | |
elif "graph" in user_message.lower(): | |
return "Graphs are powerful! What key points did you plot, and why?" | |
else: | |
# OpenAI API call (fallback response) | |
completion = client.chat.completions.create( | |
model=model, | |
messages=messages, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p | |
) | |
return completion.choices[0].message.content | |
def respond(user_message, history): | |
""" | |
Handles user input and chatbot response in Gradio. | |
- user_message: The latest input from the user. | |
- history: A list of (user, assistant) message pairs. | |
""" | |
if not user_message: | |
return "", history | |
# Generate AI response | |
assistant_reply = gpt_call(history, user_message) | |
# Append to history | |
history.append((user_message, assistant_reply)) | |
# Return the updated history and clear the input box | |
return "", history | |
############################## | |
# Gradio Chatbot UI | |
############################## | |
with gr.Blocks() as demo: | |
gr.Markdown("## AI-Guided Teacher PD Chatbot") | |
# Initial chatbot message (starts with the task) | |
chatbot = gr.Chatbot( | |
value=[("", INITIAL_PROMPT)], | |
height=500 | |
) | |
# Chat history state | |
state_history = gr.State([("", INITIAL_PROMPT)]) | |
# User input box | |
user_input = gr.Textbox( | |
placeholder="Type your response here...", | |
label="Your Input" | |
) | |
# When user submits input → respond() updates chatbot | |
user_input.submit( | |
respond, | |
inputs=[user_input, state_history], | |
outputs=[user_input, chatbot] | |
).then( | |
fn=lambda _, h: h, | |
inputs=[user_input, chatbot], | |
outputs=[state_history] | |
) | |
# Launch the chatbot | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |