import os import gradio as gr from dotenv import load_dotenv from openai import OpenAI from prompts.initial_prompt import INITIAL_PROMPT from prompts.main_prompt import TASK_PROMPT # Load the OpenAI API key from .env file if os.path.exists(".env"): load_dotenv(".env") OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=OPENAI_API_KEY) def gpt_call(history, user_message, model="gpt-4o-mini", max_tokens=512, temperature=0.7, top_p=0.95): """ Calls OpenAI's ChatCompletion API to generate responses. - history: [(user_text, assistant_text), ...] - user_message: User's latest input """ # System message (TASK_PROMPT) at the beginning messages = [{"role": "system", "content": TASK_PROMPT}] # Convert history into OpenAI format for user_text, assistant_text in history: if user_text: messages.append({"role": "user", "content": user_text}) if assistant_text: messages.append({"role": "assistant", "content": assistant_text}) # Add the latest user input messages.append({"role": "user", "content": user_message}) # AI-controlled gradual guidance if "bar model" in user_message.lower(): return "Great! You've started using a bar model. Can you explain how you divided it? What does each section represent?" elif "double number line" in user_message.lower(): return "Nice! How does your number line show the relationship between time and distance? Did you mark the correct intervals?" elif "ratio table" in user_message.lower(): return "Good choice! Before I check, how did you determine the ratio for 1 hour?" elif "graph" in user_message.lower(): return "Graphs are powerful! What key points did you plot, and why?" else: # OpenAI API call (fallback response) completion = client.chat.completions.create( model=model, messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) return completion.choices[0].message.content def respond(user_message, history): """ Handles user input and chatbot response in Gradio. - user_message: The latest input from the user. - history: A list of (user, assistant) message pairs. """ if not user_message: return "", history # Generate AI response assistant_reply = gpt_call(history, user_message) # Append to history history.append((user_message, assistant_reply)) # Return the updated history and clear the input box return "", history ############################## # Gradio Chatbot UI ############################## with gr.Blocks() as demo: gr.Markdown("## AI-Guided Teacher PD Chatbot") # Initial chatbot message (starts with the task) chatbot = gr.Chatbot( value=[("", INITIAL_PROMPT)], height=500 ) # Chat history state state_history = gr.State([("", INITIAL_PROMPT)]) # User input box user_input = gr.Textbox( placeholder="Type your response here...", label="Your Input" ) # When user submits input → respond() updates chatbot user_input.submit( respond, inputs=[user_input, state_history], outputs=[user_input, chatbot] ).then( fn=lambda _, h: h, inputs=[user_input, chatbot], outputs=[state_history] ) # Launch the chatbot if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860, share=True)