# Import necessary libraries | |
import gradio as gr # Gradio is used to create web interfaces for Python scripts. | |
from transformers import AutoConfig # AutoConfig is from the Hugging Face Transformers library, used to create configuration for various models. | |
# A list of model names to start with. These are names of popular models from the Hugging Face library. | |
model_list = ["bert-base-uncased", "gpt2", "distilbert-base-uncased"] | |
# Function to add a new model to the list. | |
def add_model_to_list(new_model): | |
# Check if the new model is not already in the list and is not an empty string. | |
if new_model and new_model not in model_list: | |
model_list.append(new_model) # Add the new model to the list. | |
return model_list | |
# Function to create a configuration for the selected model. | |
def create_config(model_name, num_labels, use_cache): | |
# If the selected model is not in the list, add it (this is a safety check). | |
if model_name not in model_list: | |
model_list.append(model_name) | |
# Create a configuration for the selected model using AutoConfig. | |
config = AutoConfig.from_pretrained(model_name, num_labels=num_labels, use_cache=use_cache) | |
return str(config) # Return the configuration as a string. | |
# Start building the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Config Class - Transformers") # Display a title for the web interface. | |
with gr.Row(): # Create a row in the interface to organize elements horizontally. | |
# Dropdown menu to select a model. | |
model_dropdown = gr.Dropdown(label="Select a Model", choices=model_list, value=model_list[0], allow_custom_value=True) | |
# Textbox for users to input a new model name. | |
new_model_input = gr.Textbox(label="Add a New Model", placeholder="Enter model name") | |
# Button to add the new model to the dropdown list. | |
add_model_button = gr.Button("Add Model") | |
# Numeric input for the number of labels (used in the model configuration). | |
num_labels_input = gr.Number(label="Number of Labels", value=2) | |
# Checkbox for users to decide whether to use caching. | |
use_cache_input = gr.Checkbox(label="Use Cache", value=True) | |
# Textbox to display the generated configuration. | |
output_area = gr.Textbox(label="Config Output") | |
# Button to create the configuration. | |
submit_button = gr.Button("Create Config") | |
# When the "Add Model" button is clicked, call `add_model_to_list` function. | |
add_model_button.click(fn=add_model_to_list, inputs=new_model_input, outputs=model_dropdown) | |
# When the "Create Config" button is clicked, call `create_config` function. | |
submit_button.click(fn=create_config, inputs=[model_dropdown, num_labels_input, use_cache_input], outputs=output_area) | |
# Launch the Gradio interface. | |
demo.launch() |