Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
import torch
|
@@ -7,35 +6,24 @@ from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
|
7 |
from gfpgan.utils import GFPGANer
|
8 |
from realesrgan.utils import RealESRGANer
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
torch.hub.download_url_to_file(
|
29 |
-
'https://media.istockphoto.com/id/523514029/photo/london-skyline-b-w.jpg?s=612x612&w=0&k=20&c=kJS1BAtfqYeUDaORupj0sBPc1hpzJhBUUqEFfRnHzZ0=',
|
30 |
-
'a2.jpg')
|
31 |
-
torch.hub.download_url_to_file(
|
32 |
-
'https://i.guim.co.uk/img/media/06f614065ed82ca0e917b149a32493c791619854/0_0_3648_2789/master/3648.jpg?width=700&quality=85&auto=format&fit=max&s=05764b507c18a38590090d987c8b6202',
|
33 |
-
'a3.jpg')
|
34 |
-
torch.hub.download_url_to_file(
|
35 |
-
'https://i.pinimg.com/736x/46/96/9e/46969eb94aec2437323464804d27706d--victorian-london-victorian-era.jpg',
|
36 |
-
'a4.jpg')
|
37 |
-
|
38 |
-
# background enhancer with RealESRGAN
|
39 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
40 |
model_path = 'realesr-general-x4v3.pth'
|
41 |
half = True if torch.cuda.is_available() else False
|
@@ -43,100 +31,91 @@ upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, ti
|
|
43 |
|
44 |
os.makedirs('output', exist_ok=True)
|
45 |
|
46 |
-
|
47 |
-
# def inference(img, version, scale, weight):
|
48 |
def inference(img, version, scale):
|
49 |
-
# weight /= 100
|
50 |
-
print(img, version, scale)
|
51 |
try:
|
52 |
-
|
53 |
-
|
|
|
|
|
54 |
if len(img.shape) == 3 and img.shape[2] == 4:
|
55 |
img_mode = 'RGBA'
|
56 |
-
elif len(img.shape) == 2:
|
57 |
img_mode = None
|
58 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
59 |
else:
|
60 |
img_mode = None
|
61 |
|
62 |
-
h, w = img.shape[
|
63 |
if h < 300:
|
64 |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
model_path=
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
if scale != 2:
|
93 |
-
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
94 |
-
h, w = img.shape[0:2]
|
95 |
-
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
96 |
-
except Exception as error:
|
97 |
-
print('wrong scale input.', error)
|
98 |
-
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
99 |
extension = 'png'
|
100 |
else:
|
101 |
extension = 'jpg'
|
|
|
102 |
save_path = f'output/out.{extension}'
|
103 |
cv2.imwrite(save_path, output)
|
104 |
-
|
105 |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
|
|
106 |
return output, save_path
|
|
|
107 |
except Exception as error:
|
108 |
-
print(
|
109 |
return None, None
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
Practically the algorithm is used to restore your **old photos** or improve **AI-generated faces**.<br>
|
115 |
-
To use it, simply just upload the concerned image.<br>
|
116 |
-
"""
|
117 |
-
article = r"""
|
118 |
-
[](https://github.com/TencentARC/GFPGAN/releases)
|
119 |
-
[](https://github.com/TencentARC/GFPGAN)
|
120 |
-
[](https://arxiv.org/abs/2101.04061)
|
121 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=dj_face_restoration_GFPGAN' alt='visitor badge'></center>
|
122 |
-
"""
|
123 |
-
demo = gr.Interface(
|
124 |
-
inference, [
|
125 |
-
gr.inputs.Image(type="filepath", label="Input"),
|
126 |
-
# gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", default='v1.4', label='version'),
|
127 |
-
gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer','CodeFormer','RealESR-General-x4v3'], type="value", default='v1.4', label='version'),
|
128 |
-
gr.inputs.Number(label="Rescaling factor", default=2),
|
129 |
-
# gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', default=50)
|
130 |
-
], [
|
131 |
-
gr.outputs.Image(type="numpy", label="Output (The whole image)"),
|
132 |
-
gr.outputs.File(label="Download the output image")
|
133 |
-
],
|
134 |
-
title=title,
|
135 |
-
description=description,
|
136 |
-
article=article,
|
137 |
-
# examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
|
138 |
-
# ['10045.png', 'v1.4', 2, 50]]).launch()
|
139 |
-
examples=[['a1.jpg', 'v1.4', 2], ['a2.jpg', 'v1.4', 2], ['a3.jpg', 'v1.4', 2],['a4.jpg', 'v1.4', 2]])
|
140 |
-
|
141 |
-
demo.queue(concurrency_count=4)
|
142 |
-
demo.launch()
|
|
|
1 |
import os
|
|
|
2 |
import cv2
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
6 |
from gfpgan.utils import GFPGANer
|
7 |
from realesrgan.utils import RealESRGANer
|
8 |
|
9 |
+
# Ensure numpy is compatible
|
10 |
+
os.system("pip install --upgrade 'numpy<2'")
|
11 |
+
|
12 |
+
# Download necessary model weights
|
13 |
+
weights = {
|
14 |
+
"realesr-general-x4v3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
15 |
+
"GFPGANv1.2.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
|
16 |
+
"GFPGANv1.3.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
|
17 |
+
"GFPGANv1.4.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
|
18 |
+
"RestoreFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth",
|
19 |
+
"CodeFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth",
|
20 |
+
}
|
21 |
+
|
22 |
+
for file, url in weights.items():
|
23 |
+
if not os.path.exists(file):
|
24 |
+
os.system(f"wget {url} -P .")
|
25 |
+
|
26 |
+
# Load ESRGAN model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
28 |
model_path = 'realesr-general-x4v3.pth'
|
29 |
half = True if torch.cuda.is_available() else False
|
|
|
31 |
|
32 |
os.makedirs('output', exist_ok=True)
|
33 |
|
34 |
+
# Image Processing Function
|
|
|
35 |
def inference(img, version, scale):
|
|
|
|
|
36 |
try:
|
37 |
+
img_path = str(img)
|
38 |
+
extension = os.path.splitext(os.path.basename(img_path))[1]
|
39 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
40 |
+
|
41 |
if len(img.shape) == 3 and img.shape[2] == 4:
|
42 |
img_mode = 'RGBA'
|
43 |
+
elif len(img.shape) == 2:
|
44 |
img_mode = None
|
45 |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
46 |
else:
|
47 |
img_mode = None
|
48 |
|
49 |
+
h, w = img.shape[:2]
|
50 |
if h < 300:
|
51 |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
52 |
|
53 |
+
# Load Face Enhancement Model
|
54 |
+
model_paths = {
|
55 |
+
'v1.2': 'GFPGANv1.2.pth',
|
56 |
+
'v1.3': 'GFPGANv1.3.pth',
|
57 |
+
'v1.4': 'GFPGANv1.4.pth',
|
58 |
+
'RestoreFormer': 'RestoreFormer.pth',
|
59 |
+
'CodeFormer': 'CodeFormer.pth',
|
60 |
+
'RealESR-General-x4v3': 'realesr-general-x4v3.pth'
|
61 |
+
}
|
62 |
+
|
63 |
+
face_enhancer = GFPGANer(
|
64 |
+
model_path=model_paths[version],
|
65 |
+
upscale=2,
|
66 |
+
arch='clean' if version.startswith('v1') else version,
|
67 |
+
channel_multiplier=2,
|
68 |
+
bg_upsampler=upsampler
|
69 |
+
)
|
70 |
+
|
71 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
72 |
+
|
73 |
+
if scale != 2:
|
74 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
75 |
+
h, w = img.shape[:2]
|
76 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
77 |
+
|
78 |
+
if img_mode == 'RGBA':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
extension = 'png'
|
80 |
else:
|
81 |
extension = 'jpg'
|
82 |
+
|
83 |
save_path = f'output/out.{extension}'
|
84 |
cv2.imwrite(save_path, output)
|
|
|
85 |
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
86 |
+
|
87 |
return output, save_path
|
88 |
+
|
89 |
except Exception as error:
|
90 |
+
print("Error:", error)
|
91 |
return None, None
|
92 |
|
93 |
+
# Gradio Blocks UI
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown("## 📸 Image Upscaling & Restoration")
|
96 |
+
gr.Markdown("### Enhance old or AI-generated images using GFPGAN & RealESRGAN")
|
97 |
+
|
98 |
+
with gr.Row():
|
99 |
+
with gr.Column():
|
100 |
+
image_input = gr.Image(type="filepath", label="Upload Image")
|
101 |
+
version_selector = gr.Radio(
|
102 |
+
['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer', 'RealESR-General-x4v3'],
|
103 |
+
label="Model Version",
|
104 |
+
value="v1.4"
|
105 |
+
)
|
106 |
+
scale_factor = gr.Number(value=2, label="Rescaling Factor")
|
107 |
+
|
108 |
+
enhance_button = gr.Button("Enhance Image 🚀")
|
109 |
+
|
110 |
+
with gr.Column():
|
111 |
+
output_image = gr.Image(type="numpy", label="Enhanced Output")
|
112 |
+
download_link = gr.File(label="Download Enhanced Image")
|
113 |
+
|
114 |
+
enhance_button.click(
|
115 |
+
fn=inference,
|
116 |
+
inputs=[image_input, version_selector, scale_factor],
|
117 |
+
outputs=[output_image, download_link]
|
118 |
+
)
|
119 |
|
120 |
+
# Launch the App
|
121 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|