MattGPT commited on
Commit
79d498b
·
verified ·
1 Parent(s): c609621

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -104
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import os
2
-
3
  import cv2
4
  import gradio as gr
5
  import torch
@@ -7,35 +6,24 @@ from basicsr.archs.srvgg_arch import SRVGGNetCompact
7
  from gfpgan.utils import GFPGANer
8
  from realesrgan.utils import RealESRGANer
9
 
10
- os.system("pip freeze")
11
- # download weights
12
- if not os.path.exists('realesr-general-x4v3.pth'):
13
- os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
14
- if not os.path.exists('GFPGANv1.2.pth'):
15
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
16
- if not os.path.exists('GFPGANv1.3.pth'):
17
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
18
- if not os.path.exists('GFPGANv1.4.pth'):
19
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
20
- if not os.path.exists('RestoreFormer.pth'):
21
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
22
- if not os.path.exists('CodeFormer.pth'):
23
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
24
-
25
- torch.hub.download_url_to_file(
26
- 'https://thumbs.dreamstime.com/b/tower-bridge-traditional-red-bus-black-white-colors-view-to-tower-bridge-london-black-white-colors-108478942.jpg',
27
- 'a1.jpg')
28
- torch.hub.download_url_to_file(
29
- 'https://media.istockphoto.com/id/523514029/photo/london-skyline-b-w.jpg?s=612x612&w=0&k=20&c=kJS1BAtfqYeUDaORupj0sBPc1hpzJhBUUqEFfRnHzZ0=',
30
- 'a2.jpg')
31
- torch.hub.download_url_to_file(
32
- 'https://i.guim.co.uk/img/media/06f614065ed82ca0e917b149a32493c791619854/0_0_3648_2789/master/3648.jpg?width=700&quality=85&auto=format&fit=max&s=05764b507c18a38590090d987c8b6202',
33
- 'a3.jpg')
34
- torch.hub.download_url_to_file(
35
- 'https://i.pinimg.com/736x/46/96/9e/46969eb94aec2437323464804d27706d--victorian-london-victorian-era.jpg',
36
- 'a4.jpg')
37
-
38
- # background enhancer with RealESRGAN
39
  model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
40
  model_path = 'realesr-general-x4v3.pth'
41
  half = True if torch.cuda.is_available() else False
@@ -43,100 +31,91 @@ upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, ti
43
 
44
  os.makedirs('output', exist_ok=True)
45
 
46
-
47
- # def inference(img, version, scale, weight):
48
  def inference(img, version, scale):
49
- # weight /= 100
50
- print(img, version, scale)
51
  try:
52
- extension = os.path.splitext(os.path.basename(str(img)))[1]
53
- img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
 
 
54
  if len(img.shape) == 3 and img.shape[2] == 4:
55
  img_mode = 'RGBA'
56
- elif len(img.shape) == 2: # for gray inputs
57
  img_mode = None
58
  img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
59
  else:
60
  img_mode = None
61
 
62
- h, w = img.shape[0:2]
63
  if h < 300:
64
  img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
65
 
66
- if version == 'v1.2':
67
- face_enhancer = GFPGANer(
68
- model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
69
- elif version == 'v1.3':
70
- face_enhancer = GFPGANer(
71
- model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
72
- elif version == 'v1.4':
73
- face_enhancer = GFPGANer(
74
- model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
75
- elif version == 'RestoreFormer':
76
- face_enhancer = GFPGANer(
77
- model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
78
- elif version == 'CodeFormer':
79
- face_enhancer = GFPGANer(
80
- model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
81
- elif version == 'RealESR-General-x4v3':
82
- face_enhancer = GFPGANer(
83
- model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)
84
-
85
- try:
86
- # _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
87
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
88
- except RuntimeError as error:
89
- print('Error', error)
90
-
91
- try:
92
- if scale != 2:
93
- interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
94
- h, w = img.shape[0:2]
95
- output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
96
- except Exception as error:
97
- print('wrong scale input.', error)
98
- if img_mode == 'RGBA': # RGBA images should be saved in png format
99
  extension = 'png'
100
  else:
101
  extension = 'jpg'
 
102
  save_path = f'output/out.{extension}'
103
  cv2.imwrite(save_path, output)
104
-
105
  output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
 
106
  return output, save_path
 
107
  except Exception as error:
108
- print('global exception', error)
109
  return None, None
110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
- title = "Image Upscaling & Restoration(esp. Face) using GFPGAN Algorithm"
113
- description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration and Upscalling of the image with a Generative Facial Prior</b></a>.<br>
114
- Practically the algorithm is used to restore your **old photos** or improve **AI-generated faces**.<br>
115
- To use it, simply just upload the concerned image.<br>
116
- """
117
- article = r"""
118
- [![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
119
- [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
120
- [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
121
- <center><img src='https://visitor-badge.glitch.me/badge?page_id=dj_face_restoration_GFPGAN' alt='visitor badge'></center>
122
- """
123
- demo = gr.Interface(
124
- inference, [
125
- gr.inputs.Image(type="filepath", label="Input"),
126
- # gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", default='v1.4', label='version'),
127
- gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer','CodeFormer','RealESR-General-x4v3'], type="value", default='v1.4', label='version'),
128
- gr.inputs.Number(label="Rescaling factor", default=2),
129
- # gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', default=50)
130
- ], [
131
- gr.outputs.Image(type="numpy", label="Output (The whole image)"),
132
- gr.outputs.File(label="Download the output image")
133
- ],
134
- title=title,
135
- description=description,
136
- article=article,
137
- # examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
138
- # ['10045.png', 'v1.4', 2, 50]]).launch()
139
- examples=[['a1.jpg', 'v1.4', 2], ['a2.jpg', 'v1.4', 2], ['a3.jpg', 'v1.4', 2],['a4.jpg', 'v1.4', 2]])
140
-
141
- demo.queue(concurrency_count=4)
142
- demo.launch()
 
1
  import os
 
2
  import cv2
3
  import gradio as gr
4
  import torch
 
6
  from gfpgan.utils import GFPGANer
7
  from realesrgan.utils import RealESRGANer
8
 
9
+ # Ensure numpy is compatible
10
+ os.system("pip install --upgrade 'numpy<2'")
11
+
12
+ # Download necessary model weights
13
+ weights = {
14
+ "realesr-general-x4v3.pth": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
15
+ "GFPGANv1.2.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
16
+ "GFPGANv1.3.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
17
+ "GFPGANv1.4.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
18
+ "RestoreFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth",
19
+ "CodeFormer.pth": "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth",
20
+ }
21
+
22
+ for file, url in weights.items():
23
+ if not os.path.exists(file):
24
+ os.system(f"wget {url} -P .")
25
+
26
+ # Load ESRGAN model
 
 
 
 
 
 
 
 
 
 
 
27
  model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
28
  model_path = 'realesr-general-x4v3.pth'
29
  half = True if torch.cuda.is_available() else False
 
31
 
32
  os.makedirs('output', exist_ok=True)
33
 
34
+ # Image Processing Function
 
35
  def inference(img, version, scale):
 
 
36
  try:
37
+ img_path = str(img)
38
+ extension = os.path.splitext(os.path.basename(img_path))[1]
39
+ img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
40
+
41
  if len(img.shape) == 3 and img.shape[2] == 4:
42
  img_mode = 'RGBA'
43
+ elif len(img.shape) == 2:
44
  img_mode = None
45
  img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
46
  else:
47
  img_mode = None
48
 
49
+ h, w = img.shape[:2]
50
  if h < 300:
51
  img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
52
 
53
+ # Load Face Enhancement Model
54
+ model_paths = {
55
+ 'v1.2': 'GFPGANv1.2.pth',
56
+ 'v1.3': 'GFPGANv1.3.pth',
57
+ 'v1.4': 'GFPGANv1.4.pth',
58
+ 'RestoreFormer': 'RestoreFormer.pth',
59
+ 'CodeFormer': 'CodeFormer.pth',
60
+ 'RealESR-General-x4v3': 'realesr-general-x4v3.pth'
61
+ }
62
+
63
+ face_enhancer = GFPGANer(
64
+ model_path=model_paths[version],
65
+ upscale=2,
66
+ arch='clean' if version.startswith('v1') else version,
67
+ channel_multiplier=2,
68
+ bg_upsampler=upsampler
69
+ )
70
+
71
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
72
+
73
+ if scale != 2:
74
+ interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
75
+ h, w = img.shape[:2]
76
+ output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
77
+
78
+ if img_mode == 'RGBA':
 
 
 
 
 
 
 
79
  extension = 'png'
80
  else:
81
  extension = 'jpg'
82
+
83
  save_path = f'output/out.{extension}'
84
  cv2.imwrite(save_path, output)
 
85
  output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
86
+
87
  return output, save_path
88
+
89
  except Exception as error:
90
+ print("Error:", error)
91
  return None, None
92
 
93
+ # Gradio Blocks UI
94
+ with gr.Blocks() as demo:
95
+ gr.Markdown("## 📸 Image Upscaling & Restoration")
96
+ gr.Markdown("### Enhance old or AI-generated images using GFPGAN & RealESRGAN")
97
+
98
+ with gr.Row():
99
+ with gr.Column():
100
+ image_input = gr.Image(type="filepath", label="Upload Image")
101
+ version_selector = gr.Radio(
102
+ ['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer', 'RealESR-General-x4v3'],
103
+ label="Model Version",
104
+ value="v1.4"
105
+ )
106
+ scale_factor = gr.Number(value=2, label="Rescaling Factor")
107
+
108
+ enhance_button = gr.Button("Enhance Image 🚀")
109
+
110
+ with gr.Column():
111
+ output_image = gr.Image(type="numpy", label="Enhanced Output")
112
+ download_link = gr.File(label="Download Enhanced Image")
113
+
114
+ enhance_button.click(
115
+ fn=inference,
116
+ inputs=[image_input, version_selector, scale_factor],
117
+ outputs=[output_image, download_link]
118
+ )
119
 
120
+ # Launch the App
121
+ demo.launch()