MattStammers commited on
Commit
6fc553a
·
1 Parent(s): f7eb114

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ import plotly.graph_objects as go
4
+ from ASDM.ASDM import Structure
5
+
6
+ def load_model(model_path):
7
+ try:
8
+ model = Structure(from_xmile=model_path)
9
+ except FileNotFoundError:
10
+ st.error(f"File {model_path} not found.")
11
+ return None
12
+ return model
13
+
14
+ def run_simulation(model, simulation_time, re_investment):
15
+ model.sim_specs['initial_time'] = 0
16
+ model.sim_specs['current_time'] = 0
17
+ model.sim_specs['dt'] = 1
18
+ model.sim_specs['simulation_time'] = simulation_time
19
+ model.sim_specs['time_units'] = 'Months'
20
+
21
+ model.clear_last_run()
22
+
23
+ model.aux_equations['percentageOfSavingsSpentOnCessation'] = str(re_investment)
24
+
25
+ model.simulate()
26
+
27
+ results = model.export_simulation_result()
28
+ results_df = pd.DataFrame.from_dict(results)
29
+
30
+ columns_to_plot = ["Current_smokers", "Ex_smokers", "Ex_smokers_starting_again"]
31
+ return results_df['Months'], results_df[columns_to_plot]
32
+
33
+ st.title('Smoking Cessation')
34
+
35
+ st.markdown("""
36
+ This simulation estimates the effects of various reinvestment levels in a smoking cessation service within a population of 900 smokers.
37
+ By varying the proportion of savings that are reinvested into the service, we can observe different outcomes in terms of current smokers, ex-smokers,
38
+ and ex-smokers who start smoking again over time.
39
+ """)
40
+
41
+ st.subheader('Slide the Slider to Vary Re-Investment Levels')
42
+
43
+ model = load_model('models/smoking cessation demo.stmx')
44
+
45
+ if model is not None:
46
+ re_investment = st.slider("Proportion of Savings Spent on Cessation", 0, 100, 45)
47
+ simulation_time = st.slider("Select the number of months to simulate:", min_value=1, max_value=36, value=24)
48
+
49
+ x_values, y_values = run_simulation(model, simulation_time, re_investment)
50
+
51
+ st.subheader('Effects of Re-Investment on Smoking Levels')
52
+
53
+ fig = go.Figure()
54
+ for column in y_values.columns:
55
+ fig.add_trace(go.Scatter(x=x_values, y=y_values[column], mode='lines', name=column))
56
+ fig.update_layout(xaxis_title='Months', yaxis_title='Number of Smokers', autosize=False, width=800, height=500)
57
+ st.plotly_chart(fig)