File size: 7,183 Bytes
976b6b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import re
import unicodedata
import nltk
from nltk import WordNetLemmatizer
from datasets import Dataset
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from transformers import XLMRobertaForSequenceClassification
from transformers import Trainer
import gradio as gr

def preprocess_text(text: str) -> str:
    """
    Preprocesses the input text by removing or replacing specific patterns.

    Args:
        text (str): The input text to be preprocessed.

    Returns:
        str: The preprocessed text with URLs, mentions, hashtags, emojis,
                special characters removed, 'and' replaced, and extra spaces trimmed.
    """
    # Define patterns
    URL_PATTERN_STR = r"""(?i)((?:https?:(?:/{1,3}|[a-z0-9%])|[a-z0-9.\-]+[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info
                      |int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|
                      bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|
                      cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|
                      gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|
                      la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|
                      nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|
                      sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|
                      uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|za|zm|zw)/)(?:[^\s()<>{}\[\]]+|\([^\s()]*?\([^\s()]+\)[^\s()]
                      *?\)|\([^\s]+?\))+(?:\([^\s()]*?\([^\s()]+\)[^\s()]*?\)|\([^\s]+?\)|[^\s`!()\[\]{};:'\".,<>?Β«Β»β€œβ€β€˜β€™])|(?:(?<!@)
                      [a-z0-9]+(?:[.\-][a-z0-9]+)*[.](?:com|net|org|edu|gov|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name
                      |post|pro|tel|travel|xxx|ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn
                      |bo|br|bs|bt|bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg
                      |eh|er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|hu|id
                      |ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|lu|lv|ly|ma|mc|
                      md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|nr|nu|nz|om|pa|pe|pf|pg|
                      ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|Ja|sk|sl|sm|sn|so|sr|ss|st|su|sv|sx|
                      sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|yu|
                      za|zm|zw)\b/?(?!@)))"""
    URL_PATTERN = re.compile(URL_PATTERN_STR, re.IGNORECASE)
    HASHTAG_PATTERN = re.compile(r'#\w*')
    MENTION_PATTERN = re.compile(r'@\w*')
    PUNCT_REPEAT_PATTERN = re.compile(r'([!?.]){2,}')
    ELONG_PATTERN = re.compile(r'\b(\S*?)(.)\2{2,}\b')
    WORD_PATTERN = re.compile(r'[^\w<>\s]')
    # Convert URL to <URL> so that GloVe will have a vector for it
    text = re.sub(URL_PATTERN, ' <URL>', text)
    # Add spaces around slashes
    text = re.sub(r"/", " / ", text)
    # Replace mentions with <USER>
    text = re.sub(MENTION_PATTERN, ' <USER> ', text)
    # Replace numbers with <NUMBER>
    text = re.sub(r"[-+]?[.\d]*[\d]+[:,.\d]*", " <NUMBER> ", text)
    # Replace hashtags with <HASHTAG>
    text = re.sub(HASHTAG_PATTERN, ' <HASHTAG> ', text)
    #text = self.AND_PATTERN.sub('and', text) # &amp; already in the Vocab of GloVe-twitter
    # Replace multiple punctuation marks with <REPEAT>
    text = re.sub(PUNCT_REPEAT_PATTERN, lambda match: f" {match.group(1)} <REPEAT> ", text)
    # Replace elongated words with <ELONG>
    text = re.sub(ELONG_PATTERN, lambda match: f" {match.group(1)}{match.group(2)} <ELONG> ", text)
    #text = emoji.replace_emoji(text, replace='') # some emojis are in the vocab so we do not remove them, the others will be OOVs
    text = text.strip()
    # Get only words
    text = re.sub(WORD_PATTERN, ' ', text)
    text = text.strip()
    # Convert stylized Unicode characters to plain text (removes bold text, etc.)
    text = ''.join(c for c in unicodedata.normalize('NFKD', text) if not unicodedata.combining(c))
    return text

def lemmatize_text(text: str) -> str:
    """
    Lemmatizes the input text using the WordNet lemmatizer.

    This method attempts to lemmatize each word in the input text. If the WordNet
    data is not available, it will download the necessary data and retry.

    Args:
        text (str): The input text to be lemmatized.

    Returns:
        str: The lemmatized text.
    """
    lemmatizer = WordNetLemmatizer()
    downloaded = False
    while not downloaded:
        try:
            lemmatizer.lemmatize(text)
            downloaded = True
        except LookupError:
            print("Downloading WordNet...")
            nltk.download('wordnet')
    return ' '.join([lemmatizer.lemmatize(word) for word in text.split()])

def predict(phrase: str, finetuned_model: str):
    phrase = preprocess_text(phrase)
    phrase = lemmatize_text(phrase)
    phrase = phrase.lower()

    # Get the tokenizer and model
    if 'xlm' in finetuned_model.lower():
        tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-base')
        model = XLMRobertaForSequenceClassification.from_pretrained(finetuned_model)
    else:
        tokenizer = AutoTokenizer.from_pretrained('cardiffnlp/twitter-roberta-base-hate')
        model = AutoModelForSequenceClassification.from_pretrained(finetuned_model)

    # Get the trainer
    trainer = Trainer(
        model=model,
        processing_class=tokenizer,
    ) 

    # Tokenize the phrase
    tokens = tokenizer(
        phrase,
        return_tensors="pt"
    )

    # Create the dataset
    phrase_dataset = Dataset.from_dict({
    "input_ids": tokens["input_ids"],
    "attention_mask": tokens["attention_mask"],
    })

    # Get the predictions
    pred = trainer.predict(phrase_dataset)

    # Check if it is sexist or not
    sexist = "Sexist" if pred.predictions.argmax() == 1 else "Not sexist"
    return sexist

demo = gr.Interface(
    fn=predict,
    inputs=[
        "textbox", 
        gr.Dropdown([
            "MatteoFasulo/twitter-roberta-base-hate_69", 
            "MatteoFasulo/twitter-roberta-base-hate_1337",
            "MatteoFasulo/twitter-roberta-base-hate_42",
            "MatteoFasulo/xlm-roberta-base_69", 
            "MatteoFasulo/xlm-roberta-base_1337",
            "MatteoFasulo/xlm-roberta-base_42",
            ], 
            label="Model",
            info="Choose the model to use for prediction.",
        )
    ],
    outputs="text",
)

demo.launch()