MatteoFasulo's picture
Enhance subjectivity prediction with detailed output and update Gradio interface
e91e5d5
import gradio as gr
import torch
from transformers import DebertaV2Model, DebertaV2Config, AutoTokenizer, PreTrainedModel
from transformers.models.deberta.modeling_deberta import ContextPooler
from transformers import pipeline
import torch.nn as nn
# Define the model and tokenizer
model_card = "microsoft/mdeberta-v3-base"
finetuned_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual-no-arabic"
THRESHOLD = 0.65
# Custom model class for combining sentiment analysis with subjectivity detection
class CustomModel(PreTrainedModel):
config_class = DebertaV2Config
def __init__(self, config, sentiment_dim=3, num_labels=2, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.deberta = DebertaV2Model(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
def forward(self, input_ids, positive, neutral, negative, token_type_ids=None, attention_mask=None, labels=None):
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
# Sentiment features as a single tensor
sentiment_features = torch.stack((positive, neutral, negative), dim=1) # Shape: (batch_size, 3)
# Combine CLS embedding with sentiment features
combined_features = torch.cat((pooled_output, sentiment_features), dim=1)
# Classification head
logits = self.classifier(self.dropout(combined_features))
return {'logits': logits}
# Load the pre-trained tokenizer
def load_tokenizer(model_name: str):
return AutoTokenizer.from_pretrained(model_name)
# Load the pre-trained model
def load_model(model_card: str, finetuned_model: str):
tokenizer = AutoTokenizer.from_pretrained(model_card)
config = DebertaV2Config.from_pretrained(
finetuned_model,
num_labels=2,
id2label={0: 'OBJ', 1: 'SUBJ'},
label2id={'OBJ': 0, 'SUBJ': 1},
output_attentions=False,
output_hidden_states=False
)
model = CustomModel(config=config, sentiment_dim=3, num_labels=2).from_pretrained(finetuned_model)
return model
# Get sentiment values using a pre-trained sentiment analysis model
def get_sentiment_values(text: str):
pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment", top_k=None)
sentiments = pipe(text)[0]
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]}
# Modify the predict_subjectivity function to return additional information
def predict_subjectivity(text):
sentiment_values = get_sentiment_values(text)
model = load_model(model_card, finetuned_model)
tokenizer = load_tokenizer(model_card)
positive = sentiment_values['positive']
neutral = sentiment_values['neutral']
negative = sentiment_values['negative']
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
inputs['positive'] = torch.tensor(positive).unsqueeze(0)
inputs['neutral'] = torch.tensor(neutral).unsqueeze(0)
inputs['negative'] = torch.tensor(negative).unsqueeze(0)
outputs = model(**inputs)
logits = outputs.get('logits')
# Calculate probabilities using softmax
probabilities = torch.nn.functional.softmax(logits, dim=1)
obj_prob, subj_prob = probabilities[0].tolist()
# Predict the class given the decision threshold
predicted_class_idx = 1 if subj_prob >= THRESHOLD else 0
predicted_class = model.config.id2label[predicted_class_idx]
# Format the output
result = f"""Prediction: {predicted_class}
Class Probabilities:
- Objective: {obj_prob:.2%}
- Subjective: {subj_prob:.2%}
Sentiment Scores:
- Positive: {positive:.2%}
- Neutral: {neutral:.2%}
- Negative: {negative:.2%}"""
return result
# Update the Gradio interface
demo = gr.Interface(
fn=predict_subjectivity,
inputs=gr.Textbox(
label='Input sentence',
placeholder='Enter a sentence from a news article',
info='Paste a sentence from a news article to determine if it is subjective or objective.'
),
outputs=gr.Textbox(
label="Results",
info="Detailed analysis including subjectivity prediction, class probabilities, and sentiment scores."
),
title='Subjectivity Detection',
description='Detect if a sentence is subjective or objective using a pre-trained model.'
)
demo.launch()