Spaces:
Sleeping
Sleeping
Commit
·
fbdaedd
1
Parent(s):
a4b33d8
Update with main function
Browse files
app.py
CHANGED
@@ -1,7 +1,92 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
model_card = "microsoft/mdeberta-v3-base"
|
4 |
+
finetuned_model = "MatteoFasulo/mdeberta-v3-base-subjectivity-sentiment-multilingual"
|
5 |
|
6 |
+
class CustomModel(PreTrainedModel):
|
7 |
+
config_class = DebertaV2Config
|
8 |
+
|
9 |
+
def __init__(self, config, sentiment_dim=3, num_labels=2, *args, **kwargs):
|
10 |
+
super().__init__(config, *args, **kwargs)
|
11 |
+
self.deberta = DebertaV2Model(config)
|
12 |
+
self.pooler = ContextPooler(config)
|
13 |
+
output_dim = self.pooler.output_dim
|
14 |
+
self.dropout = nn.Dropout(0.1)
|
15 |
+
|
16 |
+
self.classifier = nn.Linear(output_dim + sentiment_dim, num_labels)
|
17 |
+
|
18 |
+
def forward(self, input_ids, positive, neutral, negative, attention_mask=None, labels=None):
|
19 |
+
outputs = self.deberta(input_ids=input_ids, attention_mask=attention_mask)
|
20 |
+
|
21 |
+
encoder_layer = outputs[0]
|
22 |
+
pooled_output = self.pooler(encoder_layer)
|
23 |
+
|
24 |
+
# Sentiment features as a single tensor
|
25 |
+
sentiment_features = torch.stack((positive, neutral, negative), dim=1) # Shape: (batch_size, 3)
|
26 |
+
|
27 |
+
# Combine CLS embedding with sentiment features
|
28 |
+
combined_features = torch.cat((pooled_output, sentiment_features), dim=1)
|
29 |
+
|
30 |
+
# Classification head
|
31 |
+
logits = self.classifier(self.dropout(combined_features))
|
32 |
+
|
33 |
+
return {'logits': logits}
|
34 |
+
|
35 |
+
def load_tokenizer(model_name: str):
|
36 |
+
return AutoTokenizer.from_pretrained(model_name)
|
37 |
+
|
38 |
+
# Load the pre-trained model
|
39 |
+
def load_model(model_card: str, finetuned_model: str):
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_card)
|
41 |
+
|
42 |
+
config = DebertaV2Config.from_pretrained(
|
43 |
+
finetuned_model,
|
44 |
+
num_labels=2,
|
45 |
+
id2label={0: 'OBJ', 1: 'SUBJ'},
|
46 |
+
label2id={'OBJ': 0, 'SUBJ': 1},
|
47 |
+
output_attentions=False,
|
48 |
+
output_hidden_states=False
|
49 |
+
)
|
50 |
+
|
51 |
+
model = CustomModel(config=config, sentiment_dim=3, num_labels=2).from_pretrained(finetuned_model)
|
52 |
+
|
53 |
+
return model
|
54 |
+
|
55 |
+
def get_sentiment_values(text: str):
|
56 |
+
pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment", tokenizer="cardiffnlp/twitter-xlm-roberta-base-sentiment", top_k=None)
|
57 |
+
sentiments = pipe(text)[0]
|
58 |
+
return {k:v for k,v in [(list(sentiment.values())[0], list(sentiment.values())[1]) for sentiment in sentiments]}
|
59 |
+
|
60 |
+
def predict_subjectivity(text):
|
61 |
+
sentiment_values = get_sentiment_values(text)
|
62 |
+
|
63 |
+
model = load_model(model_card, finetuned_model)
|
64 |
+
tokenizer = load_tokenizer(model_card)
|
65 |
+
|
66 |
+
inputs = tokenizer(text, padding=True, truncation=True, max_length=256, return_tensors='pt')
|
67 |
+
|
68 |
+
outputs = model(**inputs)
|
69 |
+
logits = outputs.get('logits')
|
70 |
+
|
71 |
+
predicted_class_idx = logits.argmax().item()
|
72 |
+
predicted_class = model.config.id2label[predicted_class_idx]
|
73 |
+
|
74 |
+
return predicted_class
|
75 |
+
|
76 |
+
demo = gr.Interface(
|
77 |
+
fn=predict_subjectivity,
|
78 |
+
inputs=gr.Textbox(
|
79 |
+
label='Input sentence',
|
80 |
+
placeholder='Enter a sentence from a news article',
|
81 |
+
info='Paste a sentence from a news article to determine if it is subjective or objective.'
|
82 |
+
),
|
83 |
+
outputs=gr.Text(
|
84 |
+
label="Prediction",
|
85 |
+
info="Whether the sentence is subjective or objective."
|
86 |
+
),
|
87 |
+
title='Subjectivity Detection',
|
88 |
+
description='Detect if a sentence is subjective or objective using a pre-trained model.'
|
89 |
+
theme='huggingface',
|
90 |
+
)
|
91 |
+
|
92 |
+
demo.launch()
|