from pathlib import Path import stable_whisper as whisper # Local imports from .subtitle_creator import srt_create from .text_to_speech import tts from .tiktok import upload_tiktok from .video_prepare import prepare_background from .video_downloader import download_video as youtube_download from utils import * HOME = Path.cwd() media_folder = HOME / 'media' class ClipMaker: def __init__(self, clip: dict, args): self.clip = clip self.args = args # Fetch clip data or set default values self.series = clip.get('series', 'Crazy facts that you did not know') self.part = clip.get('part', '1') self.text = clip.get('text', 'The first person to survive going over Niagara Falls in a barrel was a 63-year-old school teacher') self.tags = clip.get('tags', ['survive', 'Niagara Falls', 'facts']) self.outro = clip.get('outro', 'I hope you enjoyed this video. If you did, please give it a thumbs up and subscribe to my channel. I will see you in the next video.') # Set media folder path self.path = Path(media_folder).absolute() def download_background_video(self, folder='background') -> None: # Download background video for the clip youtube_download(url=self.args.url, folder=folder) console.log(f"{msg.OK}Video downloaded from {self.args.url} to {folder}") return None def load_model(self): # Load Whisper model model = self.args.model if self.args.model != "large" and not self.args.non_english: model = self.args.model + ".en" whisper_model = whisper.load_model(model) # Set model to class attribute self.model = whisper_model return whisper_model def merge_clip_text(self) -> tuple: # Merge clip series, part, text and outro to create a single text for the clip req_text = f"{self.series} - Part {self.part}.\n{self.text}\n{self.outro}" # TODO: allow user to customize this # Remove whitespaces from series name and create a folder for the series series = self.series.replace(' ', '_') filename = f"{self.path}{os.sep}{series}{os.sep}{series}_{self.part}.mp3" # Create series folder if it does not exist Path(f"{self.path}{os.sep}{series}").mkdir(parents=True, exist_ok=True) # Set class attributes for text and mp3 (audio) file self.req_text = req_text self.mp3_file = filename return req_text, filename async def text_to_speech(self) -> None: # Convert text to speech using the selected TTS voice await tts(self.req_text, outfile=self.mp3_file, voice=self.args.tts, args=self.args) return None def generate_transcription(self) -> Path: # Generate subtitles for the clip using the Whisper model ass_filename = srt_create(self.model, self.path, self.series, self.part, self.mp3_file, **vars(self.args)) # Get the absolute path of .ass file ass_filename = Path(ass_filename).absolute() # Set class attribute for .ass style file of subtitles self.ass_file = ass_filename return ass_filename def select_background(self, random: bool = True) -> Path: # Select which background video to use for the clip try: # Background video selected with WebUI for Streamlit # Add to the path the parent folder (background) background_file = self.args.mp4_background background_mp4 = Path(HOME / 'background' / background_file) # Concat path background_mp4 = background_mp4.absolute() except AttributeError: # Local CLI execution if random: background_mp4 = random_background() else: # TODO: allow the user to select which background video to use pass # Set class attribute for mp4 background file self.mp4_background = background_mp4 return background_mp4 def integrate_subtitles(self) -> Path: # Use FFMPEG to integrate subtitles into background video and trim everything with fixed length of the audio file final_video = prepare_background(str(self.mp4_background), filename_mp3=self.mp3_file, filename_srt=str(self.ass_file), verbose=self.args.verbose) final_video = Path(final_video).absolute() # Set class attribute for mp4 final clip file self.mp4_final_video = final_video return final_video def upload_to_tiktok(self) -> bool: # TODO: check if still working with Cookie # Automatic upload on TikTok uploaded = upload_tiktok(str(self.mp4_final_video), title=f"{self.series} - {self.part}", tags=self.tags, headless=not self.args.verbose) return uploaded