Spaces:
Sleeping
Sleeping
File size: 1,668 Bytes
b916cdf c53513a b916cdf c53513a b916cdf 0ad7c15 c53513a 0ad7c15 c53513a a061413 c53513a f21499d c53513a 1f13050 a061413 1f13050 e94c1c4 1f13050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from fastapi import FastAPI
from huggingface_hub import InferenceClient
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
@app.get("/Genera")
def read_root(input):
history = [] # Puoi definire la history se necessario
generated_response = next(generate(input, history)) # Ottieni la risposta generata
return {"response": generated_response} # Restituisci la risposta generata come JSON
@app.get("/")
def read_general():
return {"response": "Benvenuto. Per maggiori info vai a /docs"} # Restituisci la risposta generata come JSON
def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
# Accumula l'output in una stringa anziché una lista
output_text = ""
for response in stream:
output_text += response.token.text
return output_text # Restituisci l'intero testo generato come una stringa |