AI / main.py
MatteoScript's picture
Update main.py
e5494cb verified
raw
history blame
14.9 kB
import os
import time
import random
import asyncio
import json
from fastapi import FastAPI, HTTPException, Depends, File, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security.api_key import APIKeyHeader
from pydantic import BaseModel
from typing import List, Optional
from dotenv import load_dotenv
from starlette.responses import StreamingResponse
from openai import OpenAI
from typing import List, Optional, Dict, Any
import io
import copy
from pathlib import Path
from pydub import AudioSegment
load_dotenv()
BASE_URL = "https://generativelanguage.googleapis.com/v1beta/openai/"
EXPECTED_API_KEY = os.getenv("API_HUGGINGFACE")
API_KEY_NAME = "Authorization"
API_KEYS = [
os.getenv("API_GEMINI_1"),
os.getenv("API_GEMINI_2"),
os.getenv("API_GEMINI_3"),
os.getenv("API_GEMINI_4"),
os.getenv("API_GEMINI_5"),
]
GROQ_BASE_URL = "https://api.groq.com/openai/v1"
WHISPER_MODEL = "whisper-large-v3-turbo"
SEGMENT_MINUTES = 50
GROQ_API_KEYS = [
os.getenv("API_GROQ_1"),
#os.getenv("API_GROQ_2"),
#os.getenv("API_GROQ_3"),
#os.getenv("API_GROQ_4"),
#os.getenv("API_GROQ_5")
]
# Classi Pydantic di VALIDAZIONE Body
class ChatCompletionRequest(BaseModel):
model: str = "gemini-2.0-flash"
messages: Optional[Any]
temperature: Optional[float] = 0.8
stream: Optional[bool] = False
stream_options: Optional[Dict[str, Any]] = None
class Config:
extra = "allow"
# Server FAST API
app = FastAPI(title="OpenAI-SDK-compatible API", version="1.0.0", description="Un wrapper FastAPI compatibile con le specifiche dell'API OpenAI.")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Client OpenAI
def get_openai_client():
''' Client OpenAI passando in modo RANDOM le Chiavi API. In questo modo posso aggirare i limiti "Quota Exceeded" '''
api_key = random.choice(API_KEYS)
return OpenAI(api_key=api_key, base_url=BASE_URL)
# Validazione API
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
def verify_api_key(api_key: str = Depends(api_key_header)):
''' Validazione Chiave API - Per ora in ENV, Token HF '''
if not api_key:
raise HTTPException(status_code=403, detail="API key mancante")
if api_key != f"Bearer {EXPECTED_API_KEY}":
raise HTTPException(status_code=403, detail="API key non valida")
return api_key
# Correzione payload con content=None
def sanitize_messages(messages):
"""Convert None content to empty string to avoid Gemini API errors"""
if not messages:
return messages
for message in messages:
if message.get('content') is None:
message['content'] = " "
return messages
# Funzione per conversione Payload OpenAI to GEMINI (anomalia per ACTION) AnyOf, e property: {}
def convert_openai_schema_for_gemini(tools_schema):
if isinstance(tools_schema, str):
try:
tools_schema = json.loads(tools_schema)
except json.JSONDecodeError:
raise ValueError("Stringa JSON non valida fornita")
converted_schema = []
for tool in tools_schema:
if tool.get("type") != "function":
converted_schema.append(tool)
continue
converted_tool = {"type": "function", "function": {}}
func_def = tool.get("function", {})
if not func_def:
continue
converted_tool["function"]["name"] = func_def.get("name", "")
converted_tool["function"]["description"] = func_def.get("description", "")
if "parameters" in func_def:
params = func_def["parameters"]
converted_params = {"type": "object"}
if "properties" in params:
converted_properties = {}
for prop_name, prop_value in params["properties"].items():
cleaned = clean_schema_property(prop_value)
if cleaned:
converted_properties[prop_name] = cleaned
if converted_properties:
converted_params["properties"] = converted_properties
else:
converted_params["properties"] = {"parameter": {"type": "string"}}
else:
converted_params["properties"] = {"parameter": {"type": "string"}}
if "required" in params:
converted_params["required"] = params["required"]
converted_tool["function"]["parameters"] = converted_params
converted_schema.append(converted_tool)
return converted_schema
def clean_schema_property(prop):
if not isinstance(prop, dict):
return prop
result = {}
for key, value in prop.items():
if key in ("title", "default"):
continue
elif key == "anyOf":
if isinstance(value, list):
for item in value:
if isinstance(item, dict) and item.get("type") != "null":
cleaned_item = clean_schema_property(item)
for k, v in cleaned_item.items():
if k not in result:
result[k] = v
break
elif key == "oneOf":
if isinstance(value, list) and len(value) > 0:
cleaned_item = clean_schema_property(value[0])
for k, v in cleaned_item.items():
if k not in result:
result[k] = v
elif isinstance(value, dict):
cleaned_item = clean_schema_property(value)
for k, v in cleaned_item.items():
if k not in result:
result[k] = v
elif key == "properties" and isinstance(value, dict):
new_props = {}
for prop_name, prop_value in value.items():
cleaned_prop = clean_schema_property(prop_value)
if cleaned_prop:
new_props[prop_name] = cleaned_prop
if not new_props:
new_props = {"parameter": {"type": "string"}}
result[key] = new_props
elif key == "items" and isinstance(value, dict):
result[key] = clean_schema_property(value)
elif isinstance(value, list):
result[key] = [clean_schema_property(item) if isinstance(item, dict) else item for item in value]
else:
result[key] = value
if result.get("type") == "object" and ("properties" not in result or not result["properties"]):
result["properties"] = {"parameter": {"type": "string"}}
return result
def convert_payload_for_gemini(payload: ChatCompletionRequest):
if hasattr(payload, "model_dump"):
payload_converted = json.loads(payload.model_dump_json())
elif isinstance(payload, dict):
payload_converted = payload.copy()
else:
raise ValueError("Formato payload non supportato")
payload_converted.pop("metadata", None)
payload_converted.pop("store", None)
if "tools" in payload_converted:
payload_converted["tools"] = convert_openai_schema_for_gemini(payload_converted["tools"])
new_payload = ChatCompletionRequest.model_validate(payload_converted)
return new_payload
# ---------------------------------- Funzioni per Chat Completion ---------------------------------------
# Chiama API (senza Streaming)
def call_api_sync(params: ChatCompletionRequest):
''' Chiamata API senza streaming. Se da errore 429 lo rifa'''
try:
client = get_openai_client()
if params.messages:
params.messages = sanitize_messages(params.messages)
params = convert_payload_for_gemini(params)
print('------------------------------------------------------- INPUT ---------------------------------------------------------------')
print(params)
response_format = getattr(params, 'response_format', None)
if response_format and getattr(response_format, 'type', None) == 'json_schema':
response = client.beta.chat.completions.parse(**params.model_dump())
else:
response = client.chat.completions.create(**params.model_dump())
print('------------------------------------------------------- OUTPUT ---------------------------------------------------------------')
print(response)
print("")
return response
except Exception as e:
if "429" in str(e):
time.sleep(2)
return call_api_sync(params)
else:
raise e
# Chiama API (con Streaming)
async def _resp_async_generator(params: ChatCompletionRequest):
''' Chiamata API con streaming. Se da errore 429 lo rifa'''
client = get_openai_client()
try:
response = client.chat.completions.create(**params.model_dump())
if params.messages:
params.messages = sanitize_messages(params.messages)
params = convert_payload_for_gemini(params)
print('------------------------------------------------------- INPUT ---------------------------------------------------------------')
print(params.model_dump_json(indent=4))
final_response_content = ''
for chunk in response:
chunk_data = chunk.to_dict() if hasattr(chunk, "to_dict") else chunk
chunk_content = None
if chunk.choices and chunk.choices[0].delta:
chunk_content = chunk.choices[0].delta.content
if chunk_content:
final_response_content += chunk_content
yield f"data: {json.dumps(chunk_data)}\n\n"
await asyncio.sleep(0.01)
yield "data: [DONE]\n\n"
print('------------------------------------------------------- OUTPUT ---------------------------------------------------------------')
print(final_response_content)
except Exception as e:
if "429" in str(e):
await asyncio.sleep(2)
async for item in _resp_async_generator(params):
yield item
else:
error_data = {"error": str(e)}
yield f"data: {json.dumps(error_data)}\n\n"
def get_openai_client():
''' Client OpenAI passando in modo RANDOM le Chiavi API. In questo modo posso aggirare i limiti "Quota Exceeded" '''
api_key = random.choice(API_KEYS)
return OpenAI(api_key=api_key, base_url=BASE_URL)
# API Whisper Audio:
FORMAT_ALIASES = {
"mpeg": "mp3",
"x-wav": "wav",
"vnd.wave": "wav",
"x-m4a": "m4a",
"x-aac": "aac",
}
def _detect_format(upload_file: UploadFile) -> str:
"""Rileva il formato audio dal MIME-type o dall'estensione, con alias safe."""
if upload_file.content_type and upload_file.content_type.startswith("audio/"):
fmt = upload_file.content_type.split("/", 1)[1]
else:
fmt = Path(upload_file.filename).suffix.lstrip(".").lower()
return FORMAT_ALIASES.get(fmt, fmt)
def _split_audio_to_mp3_chunks(audio_bytes: bytes, input_format: str, minutes: int):
""" Converte (se serve) e splitta. Lascia che ffmpeg auto-rilevi il formato passando format=None: è più sicuro e ignora alias sbagliati. """
try:
audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
except Exception:
audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format=input_format)
chunk_len_ms = minutes * 60 * 1000
for start_ms in range(0, len(audio), chunk_len_ms):
chunk = audio[start_ms : start_ms + chunk_len_ms]
buf = io.BytesIO()
chunk.export(buf, format="mp3")
yield buf.getvalue()
def _transcribe_chunk(chunk_bytes: bytes,
model: str,
language: str,
response_format: str = "json") -> str:
bio = io.BytesIO(chunk_bytes)
bio.name = "chunk.mp3"
resp = call_whisper_api(
bio,
model=model,
language=language,
response_format=response_format
)
if isinstance(resp, str):
return resp
if hasattr(resp, "text"):
return resp.text
return resp.get("text", "")
def get_whisper_client():
api_key = random.choice(GROQ_API_KEYS)
return OpenAI(api_key=api_key, base_url=GROQ_BASE_URL)
def call_whisper_api(audio_file: io.BytesIO,
model: str = WHISPER_MODEL,
language: str = "it",
response_format: str = "json"):
try:
client = get_whisper_client()
return client.audio.transcriptions.create(
file=audio_file,
model=model,
language=language,
response_format=response_format
)
except Exception as e:
if "429" in str(e):
time.sleep(2)
return call_whisper_api(audio_file, model, language, response_format)
raise e
# ---------------------------------- Metodi API ---------------------------------------
@app.get("/")
def read_general():
return {"response": "Benvenuto"}
@app.get("/health")
async def health_check():
return {"message": "success"}
@app.post("/v1/chat/completions", dependencies=[Depends(verify_api_key)])
async def chat_completions(req: ChatCompletionRequest):
try:
if not req.messages:
raise HTTPException(status_code=400, detail="Nessun messaggio fornito")
if not req.stream:
return call_api_sync(req)
else:
return StreamingResponse(_resp_async_generator(req), media_type="application/x-ndjson")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/v1/audio/transcriptions", dependencies=[Depends(verify_api_key)])
async def audio_transcriptions_endpoint(
file: UploadFile = File(...),
model: str = Form(WHISPER_MODEL),
language: str = Form("it"),
response_format: str = Form("text"),
segment_minutes: int = Form(SEGMENT_MINUTES)):
try:
raw_bytes = await file.read()
input_fmt = _detect_format(file) or "mp3"
chunks = list(_split_audio_to_mp3_chunks(raw_bytes, input_fmt, segment_minutes))
if not chunks:
raise ValueError("Audio vuoto o formato non riconosciuto")
transcripts = [_transcribe_chunk(c, model, language, response_format) for c in chunks]
final_text = "\n\n".join(transcripts)
return {
"model": model,
"language": language,
"segments": len(transcripts),
"segment_minutes": segment_minutes,
"text": final_text,
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)