Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -173,7 +173,6 @@ class InputImage(BaseModel):
|
|
| 173 |
|
| 174 |
@app.post("/Immagine")
|
| 175 |
def generate_image(request: Request, input_data: InputImage):
|
| 176 |
-
#client = Client("https://hysts-sd-xl.hf.space/--replicas/cplz0/")
|
| 177 |
client = Client("https://manjushri-sdxl-1-0.hf.space/")
|
| 178 |
|
| 179 |
if input_data.style:
|
|
@@ -192,38 +191,20 @@ def generate_image(request: Request, input_data: InputImage):
|
|
| 192 |
attempt = 0
|
| 193 |
while attempt < max_attempts:
|
| 194 |
try:
|
| 195 |
-
#result = client.predict(
|
| 196 |
-
# input_data.input, # str in 'Prompt' Textbox component
|
| 197 |
-
# input_data.negativePrompt, # str in 'Negative prompt' Textbox component
|
| 198 |
-
# input_data.input, # str in 'Prompt 2' Textbox component
|
| 199 |
-
# input_data.negativePrompt, # str in 'Negative prompt 2' Textbox component
|
| 200 |
-
# True, # bool in 'Use negative prompt' Checkbox component
|
| 201 |
-
# True, # bool in 'Use prompt 2' Checkbox component
|
| 202 |
-
# True, # bool in 'Use negative prompt 2' Checkbox component
|
| 203 |
-
# input_data.seed, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component
|
| 204 |
-
# 1024, # float (numeric value between 256 and 1024) in 'Width' Slider component
|
| 205 |
-
# 1024, # float (numeric value between 256 and 1024) in 'Height' Slider component
|
| 206 |
-
# input_data.cfg, # float (numeric value between 1 and 20) in 'Guidance scale for base' Slider component
|
| 207 |
-
# input_data.cfg, # float (numeric value between 1 and 20) in 'Guidance scale for refiner' Slider component
|
| 208 |
-
# input_data.steps, # float (numeric value between 10 and 100) in 'Number of inference steps for base' Slider component
|
| 209 |
-
# input_data.steps, # float (numeric value between 10 and 100) in 'Number of inference steps for refiner' Slider component
|
| 210 |
-
# True, # bool in 'Apply refiner' Checkbox component
|
| 211 |
-
# api_name="/run"
|
| 212 |
-
#)
|
| 213 |
result = client.predict(
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
)
|
| 228 |
image_url = result
|
| 229 |
with open(image_url, 'rb') as img_file:
|
|
|
|
| 173 |
|
| 174 |
@app.post("/Immagine")
|
| 175 |
def generate_image(request: Request, input_data: InputImage):
|
|
|
|
| 176 |
client = Client("https://manjushri-sdxl-1-0.hf.space/")
|
| 177 |
|
| 178 |
if input_data.style:
|
|
|
|
| 191 |
attempt = 0
|
| 192 |
while attempt < max_attempts:
|
| 193 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
result = client.predict(
|
| 195 |
+
"Smiling Dog in a unicorn", # str in 'What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!' Textbox component
|
| 196 |
+
"", # str in 'What you Do Not want the AI to generate. 77 Token Limit' Textbox component
|
| 197 |
+
1024, # int | float (numeric value between 512 and 1024) in 'Height' Slider component
|
| 198 |
+
1024, # int | float (numeric value between 512 and 1024) in 'Width' Slider component
|
| 199 |
+
7, # int | float (numeric value between 1 and 15) in 'Guidance Scale: How Closely the AI follows the Prompt' Slider component
|
| 200 |
+
30, # int | float (numeric value between 25 and 100) in 'Number of Iterations' Slider component
|
| 201 |
+
0, # int | float (numeric value between 0 and 999999999999999999) in 'Seed: 0 is Random' Slider component
|
| 202 |
+
"Yes", # str in 'Upscale?' Radio component
|
| 203 |
+
"", # str in 'Embedded Prompt' Textbox component
|
| 204 |
+
"", # str in 'Embedded Negative Prompt' Textbox component
|
| 205 |
+
0.7, # int | float (numeric value between 0.7 and 0.99) in 'Refiner Denoise Start %' Slider component
|
| 206 |
+
1, # int | float (numeric value between 1 and 100) in 'Refiner Number of Iterations %' Slider component
|
| 207 |
+
api_name="/predict"
|
| 208 |
)
|
| 209 |
image_url = result
|
| 210 |
with open(image_url, 'rb') as img_file:
|