Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -3,7 +3,7 @@ import time
|
|
3 |
import random
|
4 |
import asyncio
|
5 |
import json
|
6 |
-
from fastapi import FastAPI, HTTPException, Depends, File, UploadFile, Form
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
8 |
from fastapi.security.api_key import APIKeyHeader
|
9 |
from pydantic import BaseModel
|
@@ -16,6 +16,11 @@ import io
|
|
16 |
import copy
|
17 |
from pathlib import Path
|
18 |
from pydub import AudioSegment
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
load_dotenv()
|
21 |
|
@@ -60,10 +65,14 @@ app.add_middleware(
|
|
60 |
allow_headers=["*"],
|
61 |
)
|
62 |
|
|
|
|
|
|
|
|
|
63 |
# Client OpenAI
|
64 |
def get_openai_client():
|
65 |
''' Client OpenAI passando in modo RANDOM le Chiavi API. In questo modo posso aggirare i limiti "Quota Exceeded" '''
|
66 |
-
api_key =
|
67 |
return OpenAI(api_key=api_key, base_url=BASE_URL)
|
68 |
|
69 |
# Validazione API
|
@@ -299,7 +308,6 @@ def _transcribe_chunk(chunk_bytes: bytes,
|
|
299 |
return resp.text
|
300 |
return resp.get("text", "")
|
301 |
|
302 |
-
|
303 |
def get_whisper_client():
|
304 |
api_key = random.choice(GROQ_API_KEYS)
|
305 |
return OpenAI(api_key=api_key, base_url=GROQ_BASE_URL)
|
@@ -322,6 +330,133 @@ def call_whisper_api(audio_file: io.BytesIO,
|
|
322 |
return call_whisper_api(audio_file, model, language, response_format)
|
323 |
raise e
|
324 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
# ---------------------------------- Metodi API ---------------------------------------
|
326 |
@app.get("/")
|
327 |
def read_general():
|
@@ -368,6 +503,36 @@ async def audio_transcriptions_endpoint(
|
|
368 |
except Exception as e:
|
369 |
raise HTTPException(status_code=500, detail=str(e))
|
370 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
371 |
if __name__ == "__main__":
|
372 |
import uvicorn
|
373 |
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|
|
|
3 |
import random
|
4 |
import asyncio
|
5 |
import json
|
6 |
+
from fastapi import FastAPI, HTTPException, Depends, File, UploadFile, Form, Request
|
7 |
from fastapi.middleware.cors import CORSMiddleware
|
8 |
from fastapi.security.api_key import APIKeyHeader
|
9 |
from pydantic import BaseModel
|
|
|
16 |
import copy
|
17 |
from pathlib import Path
|
18 |
from pydub import AudioSegment
|
19 |
+
import base64, uuid, mimetypes
|
20 |
+
import struct
|
21 |
+
from google import genai
|
22 |
+
from google.genai import types
|
23 |
+
import re
|
24 |
|
25 |
load_dotenv()
|
26 |
|
|
|
65 |
allow_headers=["*"],
|
66 |
)
|
67 |
|
68 |
+
# Api Key GEMINI (Random della lista in modo da averne di più)
|
69 |
+
def get_gemini_apikey():
|
70 |
+
return random.choice(API_KEYS)
|
71 |
+
|
72 |
# Client OpenAI
|
73 |
def get_openai_client():
|
74 |
''' Client OpenAI passando in modo RANDOM le Chiavi API. In questo modo posso aggirare i limiti "Quota Exceeded" '''
|
75 |
+
api_key = get_gemini_apikey()
|
76 |
return OpenAI(api_key=api_key, base_url=BASE_URL)
|
77 |
|
78 |
# Validazione API
|
|
|
308 |
return resp.text
|
309 |
return resp.get("text", "")
|
310 |
|
|
|
311 |
def get_whisper_client():
|
312 |
api_key = random.choice(GROQ_API_KEYS)
|
313 |
return OpenAI(api_key=api_key, base_url=GROQ_BASE_URL)
|
|
|
330 |
return call_whisper_api(audio_file, model, language, response_format)
|
331 |
raise e
|
332 |
|
333 |
+
class SpeechRequest(BaseModel):
|
334 |
+
model: Optional[str] = "gemini-2.5-flash-preview-tts"
|
335 |
+
input: str
|
336 |
+
voice: Optional[str] = "Kore"
|
337 |
+
speed: Optional[float] = 1.0
|
338 |
+
response_format: Optional[str] = "wav"
|
339 |
+
class Config:
|
340 |
+
extra = "allow"
|
341 |
+
|
342 |
+
class SpeechResponse(BaseModel):
|
343 |
+
model: str
|
344 |
+
response_format: str
|
345 |
+
voice: str
|
346 |
+
audio: str
|
347 |
+
|
348 |
+
def convert_format(audio_bytes: bytes, from_fmt: str, to_fmt: str) -> bytes:
|
349 |
+
"""
|
350 |
+
Converte i byte audio da 'from_fmt' a 'to_fmt' usando pydub/ffmpeg.
|
351 |
+
Supporta mp3, wav, opus, flac, aac, pcm (raw little-endian 16-bit).
|
352 |
+
"""
|
353 |
+
if from_fmt == to_fmt:
|
354 |
+
return audio_bytes
|
355 |
+
|
356 |
+
audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format=from_fmt)
|
357 |
+
buf = io.BytesIO()
|
358 |
+
if to_fmt == "pcm": # raw PCM 16-bit LE
|
359 |
+
audio.export(buf, format="raw")
|
360 |
+
else:
|
361 |
+
audio.export(buf, format=to_fmt)
|
362 |
+
return buf.getvalue()
|
363 |
+
|
364 |
+
def parse_audio_mime_type(mime_type: str) -> dict[str, int | None]:
|
365 |
+
"""Parses bits per sample and rate from an audio MIME type string """
|
366 |
+
bits_per_sample = 16
|
367 |
+
rate = 24000
|
368 |
+
parts = mime_type.split(";")
|
369 |
+
for param in parts:
|
370 |
+
param = param.strip()
|
371 |
+
if param.lower().startswith("rate="):
|
372 |
+
try:
|
373 |
+
rate_str = param.split("=", 1)[1]
|
374 |
+
rate = int(rate_str)
|
375 |
+
except (ValueError, IndexError):
|
376 |
+
pass # Keep rate as default
|
377 |
+
elif param.startswith("audio/L"):
|
378 |
+
try:
|
379 |
+
bits_per_sample = int(param.split("L", 1)[1])
|
380 |
+
except (ValueError, IndexError):
|
381 |
+
pass # Keep bits_per_sample as default if conversion fails
|
382 |
+
return {"bits_per_sample": bits_per_sample, "rate": rate}
|
383 |
+
|
384 |
+
def convert_to_wav(audio_data: bytes, mime_type: str) -> bytes:
|
385 |
+
"""Generates a WAV file header for the given audio data and parameters."""
|
386 |
+
parameters = parse_audio_mime_type(mime_type)
|
387 |
+
bits_per_sample = parameters["bits_per_sample"]
|
388 |
+
sample_rate = parameters["rate"]
|
389 |
+
num_channels = 1
|
390 |
+
data_size = len(audio_data)
|
391 |
+
bytes_per_sample = bits_per_sample // 8
|
392 |
+
block_align = num_channels * bytes_per_sample
|
393 |
+
byte_rate = sample_rate * block_align
|
394 |
+
chunk_size = 36 + data_size
|
395 |
+
header = struct.pack(
|
396 |
+
"<4sI4s4sIHHIIHH4sI",
|
397 |
+
b"RIFF", # ChunkID
|
398 |
+
chunk_size, # ChunkSize (total file size - 8 bytes)
|
399 |
+
b"WAVE", # Format
|
400 |
+
b"fmt ", # Subchunk1ID
|
401 |
+
16, # Subchunk1Size (16 for PCM)
|
402 |
+
1, # AudioFormat (1 for PCM)
|
403 |
+
num_channels, # NumChannels
|
404 |
+
sample_rate, # SampleRate
|
405 |
+
byte_rate, # ByteRate
|
406 |
+
block_align, # BlockAlign
|
407 |
+
bits_per_sample, # BitsPerSample
|
408 |
+
b"data", # Subchunk2ID
|
409 |
+
data_size # Subchunk2Size (size of audio data)
|
410 |
+
)
|
411 |
+
return header + audio_data
|
412 |
+
|
413 |
+
# Generazione Audio
|
414 |
+
def generate_audio(model: str,
|
415 |
+
content: str,
|
416 |
+
speaker1: str = "Kore",
|
417 |
+
speaker2: str = "Schedar") -> bytes:
|
418 |
+
"""Restituisce i byte WAV generati da Gemini-TTS (multi-speaker)."""
|
419 |
+
client = genai.Client(api_key=get_gemini_apikey())
|
420 |
+
contents = [types.Content(role="user", parts=[types.Part.from_text(text=content)])]
|
421 |
+
cfg = types.GenerateContentConfig(
|
422 |
+
temperature=1,
|
423 |
+
response_modalities=["audio"],
|
424 |
+
speech_config=types.SpeechConfig(
|
425 |
+
multi_speaker_voice_config=types.MultiSpeakerVoiceConfig(
|
426 |
+
speaker_voice_configs=[
|
427 |
+
types.SpeakerVoiceConfig(
|
428 |
+
speaker="Speaker 1",
|
429 |
+
voice_config=types.VoiceConfig(
|
430 |
+
prebuilt_voice_config=types.PrebuiltVoiceConfig(
|
431 |
+
voice_name=speaker1
|
432 |
+
)
|
433 |
+
),
|
434 |
+
),
|
435 |
+
types.SpeakerVoiceConfig(
|
436 |
+
speaker="Speaker 2",
|
437 |
+
voice_config=types.VoiceConfig(
|
438 |
+
prebuilt_voice_config=types.PrebuiltVoiceConfig(
|
439 |
+
voice_name=speaker2
|
440 |
+
)
|
441 |
+
),
|
442 |
+
),
|
443 |
+
]
|
444 |
+
),
|
445 |
+
),
|
446 |
+
)
|
447 |
+
|
448 |
+
for chunk in client.models.generate_content_stream(
|
449 |
+
model=model, contents=contents, config=cfg
|
450 |
+
):
|
451 |
+
part = chunk.candidates[0].content.parts[0]
|
452 |
+
if part.inline_data and part.inline_data.data:
|
453 |
+
data = part.inline_data.data
|
454 |
+
if mimetypes.guess_extension(part.inline_data.mime_type) is None:
|
455 |
+
data = convert_to_wav(data, part.inline_data.mime_type)
|
456 |
+
return data
|
457 |
+
raise RuntimeError("Nessun dato audio ricevuto")
|
458 |
+
|
459 |
+
|
460 |
# ---------------------------------- Metodi API ---------------------------------------
|
461 |
@app.get("/")
|
462 |
def read_general():
|
|
|
503 |
except Exception as e:
|
504 |
raise HTTPException(status_code=500, detail=str(e))
|
505 |
|
506 |
+
@app.post("/v1/audio/speech", dependencies=[Depends(verify_api_key)],
|
507 |
+
response_model=SpeechResponse)
|
508 |
+
async def audio_speech_endpoint(req: SpeechRequest, request: Request):
|
509 |
+
try:
|
510 |
+
voices = re.split(r"[;,|]", req.voice)
|
511 |
+
speaker1 = voices[0].strip()
|
512 |
+
speaker2 = voices[1].strip() if len(voices) > 1 else "Schedar"
|
513 |
+
print('------------------------------------------------------- INPUT ---------------------------------------------------------------')
|
514 |
+
print(req.voice)
|
515 |
+
print(req.input)
|
516 |
+
wav_bytes = generate_audio(
|
517 |
+
model=req.model,
|
518 |
+
content=req.input,
|
519 |
+
speaker1=speaker1,
|
520 |
+
speaker2=speaker2
|
521 |
+
)
|
522 |
+
audio_bytes = convert_format(wav_bytes, "wav", req.response_format)
|
523 |
+
audio_fmt = req.response_format.lower()
|
524 |
+
audio_bytes = convert_format(wav_bytes, "wav", audio_fmt)
|
525 |
+
return StreamingResponse(
|
526 |
+
io.BytesIO(audio_bytes),
|
527 |
+
media_type="application/octet-stream",
|
528 |
+
headers={
|
529 |
+
"Content-Disposition": f'attachment; filename="audio.{audio_fmt}"',
|
530 |
+
"X-OpenAI-Response-Format": audio_fmt,
|
531 |
+
},
|
532 |
+
)
|
533 |
+
except Exception as e:
|
534 |
+
raise HTTPException(status_code=500, detail=str(e))
|
535 |
+
|
536 |
if __name__ == "__main__":
|
537 |
import uvicorn
|
538 |
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|