Spaces:
Sleeping
Sleeping
File size: 3,387 Bytes
738953f af105a4 738953f 85dc520 af105a4 85dc520 5ec26f3 e6f2e4b af105a4 f83c8d7 af105a4 5433a48 af105a4 6b0c2cb e6f2e4b 6a52f61 6b0c2cb af105a4 f83c8d7 928b239 f83c8d7 1caab03 f83c8d7 85dc520 a06c8f9 0e6616c a93d05b 7744e2a f83c8d7 de79f12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
from huggingface_hub import InferenceClient
import gradio as gr
import requests
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
#manual_url = "https://script.google.com/macros/s/AKfycbzlFFMNw0Zc7IKt4Sn7KB5qggPMlh_2mdMn5uOjw93MF2L-58SPb4ZPUQKHJppLSLBi/exec"
manual_content = None
def get_manual_content():
# global manual_content
# response = requests.get(manual_url)
# if response.status_code == 200:
manual_content = '''
input: {
role: "system",
content: "Tu sei BonsiAI l'assistente virtuale per studenti direttamente incaricato dal Sig.Bonsignori. Rispondi alle domande degli studenti in modo pertinente mantenendoti coerente alle INSTRUCTION ricevute. Sii cordiale, gentile e simpatico, utilizzando gerghi giovanili tipici della Generazione Z",
},
messages: [
{
role: "instructions",
content: [
"Per le info sui compiti di tecnologia alimentare, rivolgersi alla Professoressa Lampugnani.",
"Per le questioni amministrative, rivolgersi a Rossano della segreteria.",
"Per il compito di matematica devi seguire il PDF su Classroom",
"Se vuoi lamentarti per i compiti non farlo dal preside ma chiedi un appuntamento al tuo tutor",
"Per il colloquio con i genitori manda una mail a [email protected]"
],
},
''';
def format_prompt(message, history):
global manual_content
if manual_content is None or not history or not any(user_prompt for user_prompt, _ in history):
get_manual_content()
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}"
prompt += '</s>'
prompt += manual_content + f'''{{
"role": "user",
"content": "{message}"
}}
]'''
return prompt
def generate(
prompt, history, temperature=0.2, max_new_tokens=300, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
mychatbot = gr.Chatbot(
avatar_images=["./user.png", "./bonsi.jpeg"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,value=[[None, "Ciao sono Bonsi AI il tuo assistente personale del centro di formazione Bonsignori di Remedello"]], )
demo = gr.ChatInterface(fn=generate,
chatbot=mychatbot,
title="Bonsi AI 🪴",
textbox=gr.Textbox(placeholder="Cosa posso fare per te, studente..."),
theme="gradio/base",
submit_btn="Invia",
retry_btn=None,
undo_btn=None,
clear_btn="Cancella"
)
demo.queue().launch(show_api=True, share=True) |