Spaces:
Sleeping
Sleeping
File size: 92,381 Bytes
d60dac5 12f17b8 8d5b1f3 c17cf76 8d5b1f3 a7435d7 8d5b1f3 12f17b8 8d5b1f3 7376a17 8d5b1f3 2b0a649 8d5b1f3 2b0a649 8d5b1f3 12f17b8 8d5b1f3 12f17b8 8d5b1f3 12f17b8 8d5b1f3 12f17b8 8d5b1f3 12f17b8 8d5b1f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from io import BytesIO # Importa BytesIO per gestire file in memoria
try:
import scipy.stats # Per correlazione spearman opzionale
SCIPY_AVAILABLE = True
except ImportError:
SCIPY_AVAILABLE = False
# Sposta l'avviso della libreria scipy dopo il caricamento del file,
# così non appare se non viene caricato nessun file.
# st.sidebar.warning("Libreria 'scipy' non trovata...") # Rimosso da qui
# --- Configuration ---
st.set_page_config(layout="wide", page_title="Dashboard Analisi Clima")
# --- Constants & Helper Functions ---
SCORE_BUCKETS = {
(0, 2.5): "Critico",
(2.5, 4.5): "Neutrale",
(4.5, 7): "Positivo" # Assumendo scala fino a 6, ma 7 copre > 4.5
}
BUCKET_COLORS = {"Critico": "#d62728", "Neutrale": "#ff7f0e", "Positivo": "#2ca02c"}
THRESHOLD_LOW = 3.0 # Leggermente aggiustato per bullet chart
THRESHOLD_HIGH = 4.5 # Leggermente aggiustato per bullet chart
PLOTLY_TEMPLATE = "plotly_white" # "seaborn" #"plotly_dark" # "ggplot2" # "plotly_white"
def categorize_score(score):
if pd.isna(score):
return "Non Risposto"
# Ajust range slightly to handle edge cases like 2.5 exactly
if 0 <= score <= 2.5: return "Critico"
if 2.5 < score <= 4.5: return "Neutrale"
if 4.5 < score <= 7: return "Positivo" # Assuming max score is around 6
return "Sconosciuto" # Should not happen with numeric data in expected range
@st.cache_data
# Modifica la funzione per accettare l'oggetto file caricato invece del percorso
def load_and_prepare_data(uploaded_file_object):
if uploaded_file_object is None:
return None, None, None, None, None, None, None
try:
# Legge direttamente dall'oggetto file in memoria
# Explicitly try different encodings if default fails
try:
# Usa BytesIO per permettere a read_csv di rileggere se necessario
file_content = BytesIO(uploaded_file_object.getvalue())
df_orig = pd.read_csv(file_content, delimiter=';', encoding='utf-8')
except UnicodeDecodeError:
try:
file_content.seek(0) # Riavvolgi il buffer
df_orig = pd.read_csv(file_content, delimiter=';', encoding='latin-1')
except UnicodeDecodeError:
file_content.seek(0) # Riavvolgi il buffer
df_orig = pd.read_csv(file_content, delimiter=';', encoding='iso-8859-1')
# Rimuovi FileNotFoundError dato che non usiamo più un percorso fisso
# except FileNotFoundError:
# st.error(f"Errore: File non trovato...") # Rimosso
# return None, None, None, None, None, None, None
except Exception as e:
st.error(f"Errore durante la lettura del CSV caricato: {e}")
return None, None, None, None, None, None, None
# --- Il resto della funzione di preparazione dati rimane invariato ---
original_columns = df_orig.columns.tolist()
unnamed_cols = [col for col in df_orig.columns if str(col).startswith('Unnamed:')]
df = df_orig.drop(columns=unnamed_cols)
cleaned_original_columns = df.columns.tolist() # Update after drop
header_row_index = 0 # Assuming header is the first row after loading
new_header = df.iloc[header_row_index].tolist()
df = df[header_row_index + 1:].reset_index(drop=True)
# Clean the header: replace NaN/None with placeholders, ensure strings, strip whitespace
cleaned_header = []
for i, col in enumerate(new_header):
col_str = str(col).strip() if pd.notna(col) else ""
if not col_str: # If empty after stripping
if i < len(cleaned_original_columns) and not cleaned_original_columns[i].startswith('Unnamed:'):
cleaned_header.append(str(cleaned_original_columns[i]).strip()) # Use original name if meaningful
else:
cleaned_header.append(f"Colonna_Sconosciuta_{i}") # Placeholder
else:
cleaned_header.append(col_str)
# *** START: Enhanced Duplicate Column Handling ***
counts = {}
final_header = []
original_to_final_map = {} # Map original cleaned name to final unique name
for i, col_name in enumerate(cleaned_header):
original_name = col_name # Keep track of the name before potential suffix
if col_name in counts:
counts[col_name] += 1
new_name = f"{col_name}_{counts[col_name]}"
final_header.append(new_name)
# Store mapping if original name was intended as a question
# Heuristic: assume non-demographic columns are potential questions
if i >= 3: # Assuming first 3 are demo - adjust if needed
original_to_final_map[original_name] = original_to_final_map.get(original_name, []) + [new_name]
else:
counts[col_name] = 0
final_header.append(col_name)
if i >= 3:
original_to_final_map[original_name] = [col_name] # First occurrence
df.columns = final_header
# *** END: Enhanced Duplicate Column Handling ***
# --- Category Mapping ---
def get_category_from_original(original_col_name, potential_category_source):
col_name_str = str(original_col_name).strip()
source_str = str(potential_category_source).strip()
if pd.notna(potential_category_source) and not source_str.isdigit() and 'domanda' not in source_str.lower():
base_name = source_str.split('.')[0].strip()
if base_name: return base_name
if '.' in col_name_str:
base_name = col_name_str.split('.')[0].strip()
suffix = col_name_str.split('.')[-1]
if suffix.isdigit():
if base_name: return base_name
elif not col_name_str.isdigit() and 'domanda' not in col_name_str.lower():
if col_name_str: return col_name_str
return "Categoria Sconosciuta"
question_to_category_map = {}
demographic_indices = list(range(min(3, len(final_header)))) # Safer range for demo indices
for i, final_col_name in enumerate(final_header):
if i not in demographic_indices:
# Find the original cleaned header name before potential suffix was added
original_cleaned_name = final_col_name
if '_' in final_col_name:
parts = final_col_name.rsplit('_', 1)
if parts[1].isdigit() and int(parts[1]) == counts.get(parts[0], -1):
original_cleaned_name = parts[0]
# Use original column name from the CSV *before* taking row 0 as header for category inference
original_csv_col = cleaned_original_columns[i] if i < len(cleaned_original_columns) else original_cleaned_name
category = get_category_from_original(original_csv_col, original_csv_col)
category = category.replace("Parità di genere", "Parità Genere")
question_to_category_map[final_col_name] = category # Map the *final unique* column name
# --- Demographic Columns ---
demographic_map = {}
if len(final_header) > 0: demographic_map[final_header[0]] = 'Genere'
if len(final_header) > 1: demographic_map[final_header[1]] = 'Fascia_Eta'
if len(final_header) > 2: demographic_map[final_header[2]] = 'Sede'
# Check if default demo columns actually exist before renaming
valid_demo_map = {k: v for k, v in demographic_map.items() if k in df.columns}
df.rename(columns=valid_demo_map, inplace=True)
demographic_cols = list(valid_demo_map.values())
# Filter out potential summary rows
if 'Sede' in df.columns:
anomalous_sede = ['Media', 'Mediana', 'Media sezione', 'Totale', 'Scarto quadratico medio']
df = df[~df['Sede'].astype(str).str.strip().str.lower().isin([s.lower() for s in anomalous_sede])]
# Fill missing demographic data
for col in demographic_cols:
if col in df.columns:
df[col] = df[col].astype(str).fillna('Non specificato').replace(['nan', 'None', ''], 'Non specificato')
# Identify question columns based on the map (using final unique names)
question_cols = list(question_to_category_map.keys())
question_cols = [col for col in question_cols if col in df.columns] # Ensure they exist
# --- Type Conversion ---
for col in question_cols:
if df[col].dtype == 'object':
df[col] = df[col].astype(str).str.replace(',', '.', regex=False)
df[col] = df[col].replace(['nan', 'N/A', '', '-', 'None'], np.nan, regex=False)
df[col] = pd.to_numeric(df[col], errors='coerce')
numeric_question_cols = df[question_cols].select_dtypes(include=np.number).columns.tolist()
# Determine response scale dynamically
response_scale = (1, 6) # Default fallback
if numeric_question_cols:
valid_numeric_cols = [col for col in numeric_question_cols if col in df.columns]
if valid_numeric_cols:
# Drop rows where ALL numeric questions are NaN before calculating min/max
df_numeric_only = df[valid_numeric_cols].dropna(how='all')
if not df_numeric_only.empty:
min_val = df_numeric_only.min(skipna=True).min(skipna=True)
max_val = df_numeric_only.max(skipna=True).max(skipna=True)
if pd.notna(min_val) and pd.notna(max_val):
response_scale = (min_val, max_val)
# --- Identify Overall Satisfaction Question ---
overall_satisfaction_question = None
possible_satisfaction_cats = ['Riepilogo', 'Generale', 'Soddisfazione Complessiva']
# Use final unique names from numeric_question_cols
possible_satisfaction_cols = [q for q in numeric_question_cols
if question_to_category_map.get(q) in possible_satisfaction_cats]
if possible_satisfaction_cols:
overall_satisfaction_question = possible_satisfaction_cols[0]
else:
keywords = ['soddisfazione', 'complessivamente', 'generale', 'valutazione']
for q in numeric_question_cols:
# Check original cleaned name for keywords if available, else the final name
original_cleaned_name = q.rsplit('_', 1)[0] if '_' in q and q.rsplit('_', 1)[1].isdigit() else q
q_check = original_cleaned_name.lower() # Check original name primarily
if any(keyword in q_check for keyword in keywords):
overall_satisfaction_question = q # Assign the final unique name
st.info(f"Domanda soddisfazione generale identificata: '{q}' (basata su '{original_cleaned_name}')")
break
if not overall_satisfaction_question and numeric_question_cols:
st.warning("Impossibile identificare automaticamente la domanda sulla soddisfazione generale. Alcune analisi potrebbero essere limitate.")
return df, demographic_cols, question_cols, question_to_category_map, numeric_question_cols, response_scale, overall_satisfaction_question
# --- Inizio Script Principale ---
# Aggiungi il widget per caricare il file
st.sidebar.title('Sondaggio')
uploaded_file = st.sidebar.file_uploader("Carica il tuo file CSV", type="csv")
st.sidebar.divider()
# Procedi solo se un file è stato caricato
if uploaded_file is not None:
# Sposta l'avviso della libreria scipy qui, così appare solo se si procede
if not SCIPY_AVAILABLE:
st.sidebar.warning("Libreria 'scipy' non trovata. La correlazione Spearman non sarà disponibile. Installa con: pip install scipy")
# --- Load Data ---
# Chiama la funzione di caricamento passando l'oggetto file caricato
try:
df_full, demographic_cols, question_cols, question_to_category_map, numeric_question_cols, response_scale, overall_satisfaction_question = load_and_prepare_data(uploaded_file)
if df_full is None:
st.error("Caricamento o preparazione dati fallito. Controlla il file CSV.")
st.stop() # Ferma l'esecuzione se il caricamento fallisce
elif df_full.empty:
st.warning("Il file CSV caricato risulta vuoto dopo la pulizia iniziale.")
# Si potrebbe fermare qui o continuare mostrando avvisi di dati vuoti
# st.stop()
except Exception as e:
st.error(f"Errore critico durante l'inizializzazione dei dati dal file caricato: {e}")
st.exception(e) # Stampa traceback completo per debug
st.stop() # Ferma l'esecuzione in caso di errore critico
# --- DA QUI IN POI, IL CODICE DEL DASHBOARD RIMANE INVARIATO ---
# --- MA VIENE ESEGUITO SOLO SE uploaded_file IS NOT None ---
# --- App Title ---
st.title("🚀 Dashboard Analisi Clima")
# ==============================================================================
# --- Sidebar ---
# ==============================================================================
st.sidebar.title("Filtri & Controlli")
st.sidebar.subheader("👤 Filtri Demografici")
selected_filters = {}
if demographic_cols:
# Use df_full for filter options to show all possibilities
for demo_col in demographic_cols:
# Ensure the column exists in df_full before creating filter
if demo_col in df_full.columns:
unique_values = sorted(df_full[demo_col].astype(str).unique())
if len(unique_values) > 1:
selected_filters[demo_col] = st.sidebar.multiselect(
f"{demo_col}",
options=unique_values,
default=unique_values
)
else:
# If only one value, no need for multiselect, just store it
selected_filters[demo_col] = unique_values
else:
st.sidebar.warning(f"Colonna demografica '{demo_col}' definita ma non trovata nel DataFrame.")
# Apply filters - start from df_full each time filters change
df_filtered = df_full.copy()
for col, selected_values in selected_filters.items():
# Check if the column exists in df_filtered before applying the filter
if col in df_filtered.columns and selected_values:
# Ensure selected_values are strings for comparison if the column is string
if df_filtered[col].dtype == 'object':
selected_values_str = [str(v) for v in selected_values]
df_filtered = df_filtered[df_filtered[col].astype(str).isin(selected_values_str)]
else: # Keep original type for non-object columns if filtering is needed
df_filtered = df_filtered[df_filtered[col].isin(selected_values)]
else:
st.sidebar.warning("Nessuna colonna demografica valida trovata per i filtri.")
df_filtered = df_full.copy() if df_full is not None else pd.DataFrame() # Use full data if available, else empty
st.sidebar.divider()
st.sidebar.subheader("📊 Metriche Chiave (Filtrate)")
# Recalculate total respondents after filtering
total_respondents_filtered = len(df_filtered) if df_filtered is not None else 0
st.sidebar.metric("Rispondenti Filtrati", total_respondents_filtered)
# --- Calculate metrics only if df_filtered is not empty ---
avg_overall_filtered = np.nan
avg_scores_per_category_f = pd.Series(dtype=float)
driver_df = pd.DataFrame() # Initialize empty driver dataframe
# Default correlation method
corr_method_sidebar = 'pearson'
if SCIPY_AVAILABLE:
corr_method_sidebar = 'spearman' # Prefer Spearman if scipy is available
if df_filtered is not None and not df_filtered.empty and numeric_question_cols:
# Ensure overall satisfaction question exists in the filtered numeric columns
if overall_satisfaction_question and overall_satisfaction_question in df_filtered.columns and pd.api.types.is_numeric_dtype(df_filtered[overall_satisfaction_question]):
overall_sat_data = df_filtered[overall_satisfaction_question].dropna()
if not overall_sat_data.empty:
avg_overall_filtered = overall_sat_data.mean()
midpoint = (response_scale[0] + response_scale[1]) / 2 if response_scale else 3.5 # Fallback midpoint
delta_vs_mid = avg_overall_filtered - midpoint
st.sidebar.metric("Soddisfazione Generale Media", f"{avg_overall_filtered:.2f}", f"{delta_vs_mid:+.2f} vs Midpoint ({midpoint:.1f})")
else:
st.sidebar.metric("Soddisfazione Generale Media", "N/D (no data)")
else:
st.sidebar.metric("Soddisfazione Generale Media", "N/D (Domanda non trovata/valida)")
# Calculate category averages on filtered data
numeric_cols_in_filtered = [col for col in numeric_question_cols if col in df_filtered.columns]
if numeric_cols_in_filtered:
avg_scores_per_question_f = df_filtered[numeric_cols_in_filtered].mean(axis=0, skipna=True)
df_avg_scores_f = pd.DataFrame({'Domanda': avg_scores_per_question_f.index, 'Punteggio Medio': avg_scores_per_question_f.values})
df_avg_scores_f['Categoria'] = df_avg_scores_f['Domanda'].map(question_to_category_map).fillna("Senza Categoria")
df_avg_scores_f.dropna(subset=['Punteggio Medio'], inplace=True)
if not df_avg_scores_f.empty:
# Exclude "Senza Categoria" from min/max display if desired
avg_scores_valid_cat = df_avg_scores_f[df_avg_scores_f['Categoria'] != "Senza Categoria"]
if not avg_scores_valid_cat.empty:
avg_scores_per_category_f = avg_scores_valid_cat.groupby('Categoria')['Punteggio Medio'].mean().sort_values()
if not avg_scores_per_category_f.empty:
min_cat_score = avg_scores_per_category_f.iloc[0]
max_cat_score = avg_scores_per_category_f.iloc[-1]
delta_min = f"{min_cat_score - avg_overall_filtered:.2f} vs Sod. Gen." if not np.isnan(avg_overall_filtered) else None
delta_max = f"{max_cat_score - avg_overall_filtered:.2f} vs Sod. Gen." if not np.isnan(avg_overall_filtered) else None
st.sidebar.metric(f"⚠️ Cat. Punteggio MIN", f"{avg_scores_per_category_f.index[0]} ({min_cat_score:.2f})", delta_min, delta_color="inverse")
st.sidebar.metric(f"✅ Cat. Punteggio MAX", f"{avg_scores_per_category_f.index[-1]} ({max_cat_score:.2f})", delta_max, delta_color="normal")
else:
st.sidebar.text("N/D per Categorie (Vuote dopo agg.)")
else:
st.sidebar.text("N/D per Categorie (Solo 'Senza Cat.')")
else:
st.sidebar.text("N/D per Categorie (No medie domande)")
else:
st.sidebar.text("N/D per Categorie (No colonne numeriche)")
# --- Calculate Driver Data (Correlation) ---
if overall_satisfaction_question and overall_satisfaction_question in df_filtered.columns and pd.api.types.is_numeric_dtype(df_filtered[overall_satisfaction_question]):
# Ensure overall satisfaction has variance
if df_filtered[overall_satisfaction_question].nunique(dropna=True) > 1:
driver_candidate_cols = [col for col in numeric_cols_in_filtered if col != overall_satisfaction_question and df_filtered[col].nunique(dropna=True) > 1]
if driver_candidate_cols:
try:
# Calculate correlations
correlations = df_filtered[driver_candidate_cols].corrwith(df_filtered[overall_satisfaction_question], method=corr_method_sidebar).dropna()
# Calculate average scores for the same candidates
avg_scores_drivers = df_filtered[driver_candidate_cols].mean(skipna=True)
# Combine into driver_df
if not correlations.empty:
driver_df = pd.DataFrame({'Correlazione': correlations})
# Add avg scores safely, aligning index
driver_df = driver_df.join(avg_scores_drivers.rename('Punteggio Medio'), how='inner') # Inner join ensures only questions with both corr and avg score remain
if not driver_df.empty:
driver_df['Categoria'] = driver_df.index.map(question_to_category_map).fillna("Senza Categoria")
driver_df.dropna(subset=['Categoria', 'Correlazione', 'Punteggio Medio'], inplace=True) # Drop if essential data missing
if not driver_df.empty:
driver_df['Domanda'] = driver_df.index
driver_df['Domanda_Breve'] = driver_df['Domanda'].apply(lambda x: str(x)[:47] + "..." if len(str(x)) > 50 else str(x))
driver_df['Correlazione_Abs'] = driver_df['Correlazione'].abs()
else:
driver_df = pd.DataFrame() # Ensure it's empty if join fails
else:
st.sidebar.info("Nessuna correlazione significativa calcolata per i driver.")
except Exception as e:
st.sidebar.warning(f"Errore nel calcolo correlazioni driver: {e}")
else:
st.sidebar.info("Nessuna domanda candidata (con varianza) trovata per l'analisi driver.")
else:
st.sidebar.info("La domanda di soddisfazione generale non ha varianza nei dati filtrati.")
else: # If df_filtered is empty or no numeric questions
st.sidebar.text("Dati insufficienti o non disponibili per le metriche.")
if total_respondents_filtered == 0:
st.sidebar.text("Nessun rispondente selezionato.")
st.sidebar.metric("Soddisfazione Generale Media", "N/D")
st.sidebar.text("N/D per Categorie")
st.sidebar.divider()
st.sidebar.info("Utilizza i filtri per esplorare i dati. Le metriche e i grafici si aggiornano dinamicamente.")
# ==============================================================================
# --- Create Tabs ---
# ==============================================================================
tab_list = [
"🎯 Sintesi Chiave",
"🗺️ Mappa Domande", # New Tab for Question Map
"👥 Demografia Dettagliata",
"📊 Generale & Categorie",
"🔍 Confronti & Driver",
"📈 Grafici Avanzati"
]
tabs = st.tabs(tab_list)
# Assign tabs to variables dynamically for easier access
tab_summary = tabs[0]
tab_map = tabs[1]
tab_demo = tabs[2]
tab_overall = tabs[3]
tab_comp = tabs[4]
tab_advanced = tabs[5]
# ==============================================================================
# --- TAB Summary: Key Takeaways ---
# ==============================================================================
with tab_summary:
# Content remains largely the same, but relies on variables calculated in sidebar
st.header("🎯 Sintesi Chiave (Basata sui Filtri Correnti)")
if df_filtered is None or df_filtered.empty:
st.warning("Nessun dato disponibile con i filtri selezionati.")
else:
st.markdown(f"Analisi basata su **{total_respondents_filtered}** rispondenti.")
col_s1, col_s2, col_s3 = st.columns([2, 1, 1]) # Adjusted columns for gauge
with col_s1:
st.subheader("Punti Salienti:")
if not np.isnan(avg_overall_filtered):
max_scale = response_scale[1] if response_scale else 6 # Fallback max scale
st.markdown(f"- **Soddisfazione Generale:** {avg_overall_filtered:.2f} / {max_scale:.0f}")
else:
st.markdown(f"- **Soddisfazione Generale:** N/D")
if not avg_scores_per_category_f.empty:
st.markdown(f"- **Area Più Forte:** {avg_scores_per_category_f.index[-1]} (Media: {avg_scores_per_category_f.iloc[-1]:.2f})")
st.markdown(f"- **Area Più Debole:** {avg_scores_per_category_f.index[0]} (Media: {avg_scores_per_category_f.iloc[0]:.2f})")
else:
st.markdown("- Dati categorie non disponibili.")
# Driver info from pre-calculated driver_df
if not driver_df.empty:
try:
# Top positive driver
top_driver = driver_df.sort_values('Correlazione', ascending=False).iloc[0]
st.markdown(f"- **Driver Positivo Principale:** {top_driver['Domanda_Breve']} (Corr: {top_driver['Correlazione']:.2f})")
# Top area for improvement (high correlation, low score) - using dynamic means
avg_corr_summary = driver_df['Correlazione'].mean()
avg_score_summary = driver_df['Punteggio Medio'].mean()
potential_improvement_df = driver_df[(driver_df['Correlazione'] > avg_corr_summary) & (driver_df['Punteggio Medio'] < avg_score_summary)]
if not potential_improvement_df.empty:
potential_improvement = potential_improvement_df.sort_values('Punteggio Medio').iloc[0] # Lowest score among high-impact, low-perf
st.markdown(f"- **Focus Miglioramento:** {potential_improvement['Domanda_Breve']} (Score: {potential_improvement['Punteggio Medio']:.2f}, Corr: {potential_improvement['Correlazione']:.2f})")
else:
st.markdown("- *Focus Miglioramento:* (Nessun driver critico trovato con medie correnti)")
except IndexError:
st.markdown("- *Driver Principali:* (Errore nell'accesso ai dati driver)")
except Exception as e:
st.markdown(f"- *Driver Principali:* (Errore: {e})")
else:
st.markdown("- *Driver Principali:* (Dati non disponibili o insufficienti)")
with col_s2:
st.subheader("Sentiment") # Combined Pie and Gauge
if overall_satisfaction_question and overall_satisfaction_question in df_filtered.columns:
overall_satisfaction_data_f = df_filtered[overall_satisfaction_question].dropna()
if pd.api.types.is_numeric_dtype(overall_satisfaction_data_f) and not overall_satisfaction_data_f.empty:
# Sentiment Pie Chart
bucket_counts = overall_satisfaction_data_f.apply(categorize_score).value_counts()
# Add 'Non Risposto' if it exists
# non_risposto_count = df_filtered[overall_satisfaction_question].isna().sum() # Needs careful handling if mixing counts and percentages
bucket_counts = bucket_counts.reindex(list(BUCKET_COLORS.keys()) + ["Non Risposto"], fill_value=0) # Ensure all buckets + Non Risposto
bucket_perc = (bucket_counts / bucket_counts.sum() * 100) if bucket_counts.sum() > 0 else bucket_counts
# Define colors including for "Non Risposto"
plot_colors = BUCKET_COLORS.copy()
plot_colors["Non Risposto"] = "#bbbbbb" # Grey for non-responded
fig_sentiment_pie = px.pie(values=bucket_perc.values, names=bucket_perc.index,
title="Distribuzione Sentiment", hole=0.4,
color=bucket_perc.index, color_discrete_map=plot_colors,
template=PLOTLY_TEMPLATE)
fig_sentiment_pie.update_traces(textinfo='percent+label', sort=False, # Keep defined order
pull=[0.05 if name=="Critico" else 0 for name in bucket_perc.index])
fig_sentiment_pie.update_layout(showlegend=False, margin=dict(t=30, b=10, l=10, r=10), height=250) # Compact layout
st.plotly_chart(fig_sentiment_pie, use_container_width=True)
else:
st.write("Dati soddisfazione non numerici/vuoti.")
else:
st.write("Domanda soddisfazione non trovata.")
with col_s3:
st.subheader("Valore Medio")
if not np.isnan(avg_overall_filtered):
min_scale, max_scale = response_scale if response_scale else (1, 6)
midpoint = (min_scale + max_scale) / 2
fig_gauge = go.Figure(go.Indicator(
mode = "gauge+number",
value = avg_overall_filtered,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "Soddisfazione Generale", 'font': {'size': 16}},
gauge = {
'axis': {'range': [min_scale, max_scale], 'tickwidth': 1, 'tickcolor': "darkblue"},
'bar': {'color': "steelblue"},
'bgcolor': "white",
'borderwidth': 2,
'bordercolor': "gray",
'steps': [
{'range': [min_scale, THRESHOLD_LOW], 'color': BUCKET_COLORS['Critico']},
{'range': [THRESHOLD_LOW, THRESHOLD_HIGH], 'color': BUCKET_COLORS['Neutrale']},
{'range': [THRESHOLD_HIGH, max_scale], 'color': BUCKET_COLORS['Positivo']}],
'threshold': {
'line': {'color': "black", 'width': 3},
'thickness': 0.9,
'value': midpoint } # Show midpoint
}))
fig_gauge.update_layout(height=250, margin=dict(t=40, b=10, l=10, r=10)) # Compact layout
st.plotly_chart(fig_gauge, use_container_width=True)
else:
st.write(" ") # Placeholder
st.write(" ")
st.info("Gauge non disponibile (media N/D).")
st.markdown("---")
st.subheader("Riflessioni Rapide:")
satisfaction_text = f"{avg_overall_filtered:.2f}" if not np.isnan(avg_overall_filtered) else "N/D"
strongest_area_text = f"{avg_scores_per_category_f.index[-1]}" if not avg_scores_per_category_f.empty else "N/D"
weakest_area_text = f"{avg_scores_per_category_f.index[0]}" if not avg_scores_per_category_f.empty else "N/D"
st.info(f"""
Questa sintesi evidenzia i risultati principali per il gruppo selezionato ({total_respondents_filtered} persone).
La soddisfazione generale si attesta a **{satisfaction_text}**.
Le aree di forza (**{strongest_area_text}**) e di debolezza (**{weakest_area_text}**)
richiedono attenzione specifica. Esplora le altre schede per dettagli, confronti e visualizzazioni avanzate.
""")
# ==============================================================================
# --- TAB Map: Category -> Question Mapping ---
# ==============================================================================
with tab_map:
st.header("🗺️ Mappa Categorie e Domande")
st.write("Questa sezione mostra quali domande appartengono a ciascuna categoria identificata durante il caricamento dei dati.")
if question_to_category_map:
# Create DataFrame from the mapping dictionary
map_df = pd.DataFrame(question_to_category_map.items(), columns=['Domanda', 'Categoria'])
# Sort for better readability
map_df = map_df.sort_values(by=['Categoria', 'Domanda']).reset_index(drop=True)
st.dataframe(map_df, use_container_width=True)
# Optional: Display grouped by category
st.divider()
st.subheader("Domande Raggruppate per Categoria")
categories_in_map = map_df['Categoria'].unique()
for category in sorted(categories_in_map):
with st.expander(f"**{category}**"):
questions_in_cat = map_df[map_df['Categoria'] == category]['Domanda'].tolist()
for q in questions_in_cat:
st.markdown(f"- {q}")
else:
st.warning("La mappa tra domande e categorie non è disponibile.")
# ==============================================================================
# --- TAB Demo: Demographics ---
# ==============================================================================
with tab_demo:
st.header("👥 Analisi Demografica Dettagliata (Filtrata)")
if df_filtered is None or df_filtered.empty:
st.warning("Nessun dato disponibile con i filtri selezionati.")
elif not demographic_cols:
st.warning("Nessuna colonna demografica configurata per l'analisi.")
else:
st.write(f"Visualizzazione basata su **{len(df_filtered)}** rispondenti selezionati.")
valid_demo_cols_plots = [col for col in demographic_cols if col in df_filtered.columns] # Use only valid cols for plotting
if not valid_demo_cols_plots:
st.warning("Nessuna colonna demografica valida trovata nei dati filtrati per la visualizzazione.")
else:
# --- Basic Distribution Pies ---
st.subheader("Distribuzione Base")
num_demo_cols = len(valid_demo_cols_plots)
cols_pie = st.columns(num_demo_cols)
pie_colors = [px.colors.qualitative.Pastel1, px.colors.qualitative.Pastel2, px.colors.qualitative.Set3] # Cycle through color schemes
for i, demo_col in enumerate(valid_demo_cols_plots):
with cols_pie[i % num_demo_cols]: # Cycle through columns
if not df_filtered[demo_col].dropna().empty:
# Define order for age if applicable
category_orders = {}
if 'Eta' in demo_col:
age_order_guess = ['Fino a 30 anni', '31-40 anni', '41-50 anni', 'Oltre i 50 anni', 'Non specificato']
actual_ages = df_filtered[demo_col].unique()
ordered_actual = [age for age in age_order_guess if age in actual_ages]
ordered_actual.extend(sorted([age for age in actual_ages if age not in age_order_guess]))
category_orders={demo_col: ordered_actual}
fig_pie = px.pie(df_filtered.dropna(subset=[demo_col]), names=demo_col, hole=0.4,
color_discrete_sequence=pie_colors[i % len(pie_colors)], template=PLOTLY_TEMPLATE,
title=f"Per {demo_col}", category_orders=category_orders)
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
fig_pie.update_layout(showlegend=False, title_x=0.5, margin=dict(t=40, b=0, l=0, r=0), height=300)
st.plotly_chart(fig_pie, use_container_width=True)
else:
st.write(f"Dati '{demo_col}' non disponibili.")
st.markdown("---")
# --- Hierarchical Views: Sunburst & Treemap ---
st.subheader("Visualizzazioni Gerarchiche/Proporzionali")
if len(valid_demo_cols_plots) >= 2: # Need at least 2 demographics for interesting hierarchy
chart_type_hier = st.radio("Scegli tipo grafico gerarchico:", ["Sunburst", "Treemap"], horizontal=True, key="hier_chart_sel")
# Aggregate counts for combinations
try:
df_grouped_hier = df_filtered.groupby(valid_demo_cols_plots, observed=True).size().reset_index(name='Conteggio')
if not df_grouped_hier.empty:
# Use first valid demo col for coloring
color_col_hier = valid_demo_cols_plots[0]
if chart_type_hier == "Sunburst":
fig_hier = px.sunburst(df_grouped_hier, path=valid_demo_cols_plots, values='Conteggio',
title=f"Distribuzione Combinata (Sunburst): {', '.join(valid_demo_cols_plots)}",
template=PLOTLY_TEMPLATE,
color=color_col_hier,
color_discrete_sequence=px.colors.qualitative.Pastel)
fig_hier.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_hier, use_container_width=True)
elif chart_type_hier == "Treemap":
fig_hier = px.treemap(df_grouped_hier, path=[px.Constant("Tutti")] + valid_demo_cols_plots, values='Conteggio',
title=f"Distribuzione Combinata (Treemap): {', '.join(valid_demo_cols_plots)}",
template=PLOTLY_TEMPLATE,
color=color_col_hier,
color_discrete_sequence=px.colors.qualitative.Pastel)
fig_hier.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig_hier, use_container_width=True)
else:
st.info("Nessun dato aggregato per la visualizzazione gerarchica.")
except Exception as e:
st.error(f"Errore durante l'aggregazione per il grafico gerarchico: {e}")
else:
st.info("Sono necessarie almeno due colonne demografiche valide per le visualizzazioni gerarchiche.")
# ==============================================================================
# --- TAB Overall: Overall, Categories & Questions ---
# ==============================================================================
with tab_overall:
st.header("📊 Analisi Generale, Categorie e Domande (Filtrata)")
if df_filtered is None or df_filtered.empty:
st.warning("Nessun dato disponibile con i filtri selezionati.")
else:
# --- Overall Satisfaction Distribution ---
st.subheader("⭐ Soddisfazione Generale Complessiva")
if overall_satisfaction_question and overall_satisfaction_question in df_filtered.columns:
overall_satisfaction_data_f = df_filtered[overall_satisfaction_question].dropna()
if pd.api.types.is_numeric_dtype(overall_satisfaction_data_f) and not overall_satisfaction_data_f.empty:
col_ov1, col_ov2 = st.columns([2,1])
with col_ov1:
# Bar chart of distribution
overall_counts_f = overall_satisfaction_data_f.value_counts().sort_index()
fig_overall_satisfaction = px.bar(overall_counts_f, x=overall_counts_f.index, y=overall_counts_f.values,
labels={'x': f'Punteggio ({response_scale[0]:.0f}-{response_scale[1]:.0f})', 'y': 'Numero Risposte'},
text_auto=True, color_discrete_sequence=px.colors.sequential.Blues_r, template=PLOTLY_TEMPLATE,
title="Distribuzione Punteggi Soddisfazione Generale")
fig_overall_satisfaction.update_layout(xaxis = dict(tickmode = 'linear', dtick=1), title_x=0.5)
st.plotly_chart(fig_overall_satisfaction, use_container_width=True)
with col_ov2:
# Sentiment display
st.write(" ")
st.write(" ")
st.write("**Distribuzione Sentiment:**")
bucket_counts = overall_satisfaction_data_f.apply(categorize_score).value_counts()
bucket_counts = bucket_counts.reindex(list(BUCKET_COLORS.keys()) + ["Non Risposto"], fill_value=0)
total_valid_responses = bucket_counts.sum()
if total_valid_responses > 0:
bucket_perc = (bucket_counts / total_valid_responses * 100)
plot_colors = BUCKET_COLORS.copy()
plot_colors["Non Risposto"] = "#bbbbbb"
for bucket in plot_colors.keys(): # Iterate in defined order
if bucket in bucket_perc.index: # Check if bucket exists
perc = bucket_perc.get(bucket, 0)
count = bucket_counts.get(bucket, 0)
st.markdown(f"<span style='color:{plot_colors.get(bucket, 'black')}; font-size: 1.1em;'>■</span> **{bucket}:** {perc:.1f}% ({count})", unsafe_allow_html=True)
else:
st.write("Nessuna risposta valida per il sentiment.")
else: st.warning("Dati soddisfazione generale non disponibili/numerici.")
else: st.warning("Domanda soddisfazione generale non trovata.")
st.markdown("---")
# --- Category Averages ---
st.subheader("📈 Punteggio Medio per Categoria")
if not avg_scores_per_category_f.empty:
cat_avg_chart_type = st.radio("Visualizza medie categorie come:", ["Bar Chart", "Bullet Chart"], horizontal=True, key="cat_avg_type")
if cat_avg_chart_type == "Bar Chart":
avg_scores_plot = avg_scores_per_category_f.copy()
color_map = []
for score in avg_scores_plot.values:
if score > THRESHOLD_HIGH: color_map.append(BUCKET_COLORS["Positivo"])
elif score < THRESHOLD_LOW: color_map.append(BUCKET_COLORS["Critico"])
else: color_map.append(BUCKET_COLORS["Neutrale"])
fig_avg_category = go.Figure(go.Bar(
x=avg_scores_plot.values, y=avg_scores_plot.index, orientation='h',
text=[f'{score:.2f}' for score in avg_scores_plot.values], marker_color=color_map ))
fig_avg_category.update_traces(textposition='outside')
fig_avg_category.update_layout(
xaxis_title=f'Punteggio Medio ({response_scale[0]:.0f}-{response_scale[1]:.0f})', yaxis_title='Categoria',
yaxis={'categoryorder':'total ascending'}, template=PLOTLY_TEMPLATE, title="Medie Categorie (Colorate per Soglia)")
if not np.isnan(avg_overall_filtered):
fig_avg_category.add_vline(x=avg_overall_filtered, line_width=2, line_dash="dash", line_color="grey", annotation_text="Media Sod. Gen.")
st.plotly_chart(fig_avg_category, use_container_width=True)
elif cat_avg_chart_type == "Bullet Chart":
st.write("Grafico Bullet: Confronta la media di categoria con la media generale e le soglie.")
min_scale, max_scale = response_scale if response_scale else (1, 6)
avg_scores_plot = avg_scores_per_category_f.copy().sort_values(ascending=False)
for category, score in avg_scores_plot.items():
fig_bullet = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = score,
delta = {'reference': avg_overall_filtered, 'suffix': ' vs Media Gen.'} if not np.isnan(avg_overall_filtered) else None,
title = {'text': category, 'font': {'size': 14}},
gauge = {
'shape': "bullet",
'axis': {'range': [min_scale, max_scale]},
'threshold': {
'line': {'color': "black", 'width': 2},
'thickness': 0.75,
'value': avg_overall_filtered if not np.isnan(avg_overall_filtered) else (min_scale+max_scale)/2 },
'bgcolor': "white",
'steps': [
{'range': [min_scale, THRESHOLD_LOW], 'color': BUCKET_COLORS['Critico']},
{'range': [THRESHOLD_LOW, THRESHOLD_HIGH], 'color': BUCKET_COLORS['Neutrale']},
{'range': [THRESHOLD_HIGH, max_scale], 'color': BUCKET_COLORS['Positivo']}],
'bar': {'color': 'darkblue', 'thickness': 0.5}
}))
fig_bullet.update_layout(height=100, margin=dict(l=200, r=50, t=30, b=10))
st.plotly_chart(fig_bullet, use_container_width=True)
else:
st.warning("Impossibile calcolare medie per categoria (potrebbero essere tutte 'Senza Categoria' o vuote).")
st.markdown("---")
# --- Detailed Question Analysis ---
st.subheader("❓ Analisi Dettagliata per Domanda")
# Get categories present in the calculated averages
categories_with_averages = avg_scores_per_category_f.index.unique().tolist()
if not categories_with_averages:
# Fallback: get categories from the original map if averages failed
if question_to_category_map:
categories_with_averages = sorted(list(set(question_to_category_map.values())))
if "Senza Categoria" in categories_with_averages: categories_with_averages.remove("Senza Categoria")
if "Categoria Sconosciuta" in categories_with_averages: categories_with_averages.remove("Categoria Sconosciuta")
else:
categories_with_averages = []
if categories_with_averages: # Proceed only if there are valid categories
col_q1, col_q2 = st.columns([1,1])
with col_q1:
selected_category = st.selectbox("Seleziona Categoria:", options=categories_with_averages, key="cat_select_q")
with col_q2:
plot_type = st.radio("Tipo Grafico Domande:", ["Distribuzione % (Stacked)", "Conteggi (Bar)", "Box Plot"], horizontal=True, key="q_plot_type")
if selected_category:
st.write(f"**Dettaglio Domande: '{selected_category}'**")
# Find questions mapped to the selected category, ensuring they are numeric and exist
questions_in_category = [q for q, cat in question_to_category_map.items()
if cat == selected_category and q in df_filtered.columns and q in numeric_question_cols]
if not questions_in_category:
st.write("Nessuna domanda numerica valida trovata per questa categoria nei dati filtrati.")
else:
# Prepare data for box plot if selected
if plot_type == "Box Plot":
df_box_cat = df_filtered[questions_in_category].copy()
if not df_box_cat.empty:
df_box_melted = df_box_cat.melt(var_name='Domanda', value_name='Punteggio')
# Shorten question names for y-axis
df_box_melted['Domanda_Breve'] = df_box_melted['Domanda'].apply(lambda x: x[:67]+"..." if len(x) > 70 else x)
df_box_melted.dropna(subset=['Punteggio'], inplace=True)
if not df_box_melted.empty:
fig_box = px.box(df_box_melted, x='Punteggio', y='Domanda_Breve', orientation='h',
title=f"Distribuzione Punteggi per Domanda in '{selected_category}'",
template=PLOTLY_TEMPLATE, points=False) # points="all" can be noisy
fig_box.update_layout(yaxis={'categoryorder':'total descending'}, height=max(400, len(questions_in_category)*50)) # Dynamic height
st.plotly_chart(fig_box, use_container_width=True)
else:
st.warning("Nessun dato valido per il Box Plot dopo il dropna.")
else:
st.warning("DataFrame vuoto per il Box Plot.")
else: # Stacked or Counts Bar Chart
for question in questions_in_category:
question_data_f = df_filtered[question].dropna()
if pd.api.types.is_numeric_dtype(question_data_f) and not question_data_f.empty:
avg_q = question_data_f.mean()
q_display = question if len(question) < 100 else question[:97] + "..."
st.markdown(f"**{q_display}** (Media: {avg_q:.2f})")
if plot_type == "Conteggi (Bar)":
counts_q = question_data_f.value_counts().sort_index()
if not counts_q.empty:
fig_q = px.bar(counts_q, x=counts_q.index, y=counts_q.values,
labels={'x': 'Punteggio', 'y': 'Numero Risposte'}, text_auto='.2s',
height=250, template=PLOTLY_TEMPLATE, color_discrete_sequence=px.colors.sequential.Blues_r)
fig_q.update_layout(xaxis = dict(tickmode = 'linear', dtick=1), margin=dict(t=5, b=5, l=5, r=5))
st.plotly_chart(fig_q, use_container_width=True)
else: st.caption("Nessun dato per questo grafico.")
elif plot_type == "Distribuzione % (Stacked)":
counts_q_norm = question_data_f.value_counts(normalize=True).sort_index() * 100
if not counts_q_norm.empty:
counts_q_df = counts_q_norm.reset_index()
counts_q_df.columns = ['Punteggio', 'Percentuale']
counts_q_df['Punteggio'] = counts_q_df['Punteggio'].astype(str) # For discrete colors
# Define a color map for the scores in the stacked bar
unique_scores = sorted(counts_q_df['Punteggio'].astype(float).unique())
colors = px.colors.sequential.Blues_r
score_color_map = {str(score): colors[min(len(colors)-1, int((score - response_scale[0]) / (response_scale[1] - response_scale[0]) * len(colors)))]
for score in unique_scores}
fig_q = px.bar(counts_q_df, x='Percentuale', y=[' ']*len(counts_q_df), # Single bar
color='Punteggio', orientation='h',
text=[f"{p:.1f}%" for p in counts_q_df['Percentuale']],
height=150, template=PLOTLY_TEMPLATE,
color_discrete_map=score_color_map # Apply color map
)
fig_q.update_layout(xaxis_ticksuffix="%", yaxis_title="", xaxis_title="% Rispondenti",
legend_title="Punteggio", showlegend=True, margin=dict(t=5, b=5, l=5, r=5),
xaxis_range=[0,100], yaxis_visible=False,
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1))
fig_q.update_traces(textposition='inside', textfont_color='white') # Ensure text is visible
st.plotly_chart(fig_q, use_container_width=True)
else: st.caption("Nessun dato per questo grafico.")
else:
st.caption(f"Dati per '{question[:50]}...' non numerici o vuoti.")
else:
st.info("Nessuna categoria valida trovata per l'analisi dettagliata delle domande.")
# ==============================================================================
# --- TAB Comparisons: Comparisons, Drivers & More ---
# ==============================================================================
with tab_comp:
st.header("🔍 Confronti Demografici & Analisi Driver (Filtrata)")
if df_filtered is None or df_filtered.empty:
st.warning("Nessun dato disponibile con i filtri selezionati.")
elif not numeric_question_cols:
st.warning("Nessuna domanda numerica trovata per le analisi di confronto.")
else:
# --- Prepare Melted Data ---
@st.cache_data # Cache the melting process
def get_melted_data(df, id_vars, value_vars, cat_map):
if not value_vars: return pd.DataFrame()
cols_to_melt = [col for col in id_vars + value_vars if col in df.columns]
value_vars_valid = [col for col in value_vars if col in cols_to_melt]
id_vars_valid = [col for col in id_vars if col in cols_to_melt]
if not value_vars_valid or not id_vars_valid: return pd.DataFrame() # Need both ID and Value vars
df_melted = df[cols_to_melt].melt(id_vars=id_vars_valid, value_vars=value_vars_valid, var_name='Domanda', value_name='Punteggio')
df_melted['Categoria'] = df_melted['Domanda'].map(cat_map).fillna("Senza Categoria")
df_melted.dropna(subset=['Punteggio'], inplace=True)
return df_melted
numeric_cols_in_filtered = [col for col in numeric_question_cols if col in df_filtered.columns]
valid_demographic_cols = [col for col in demographic_cols if col in df_filtered.columns]
df_melted_f = pd.DataFrame() # Initialize empty
if valid_demographic_cols and numeric_cols_in_filtered:
df_melted_f = get_melted_data(df_filtered, valid_demographic_cols, numeric_cols_in_filtered, question_to_category_map)
# --- Demographic Comparisons (Violin / Box Plots) ---
st.subheader("🎻 Confronti Demografici (Distribuzione Punteggi per Categoria)")
if not df_melted_f.empty and valid_demographic_cols:
col_comp1, col_comp2 = st.columns(2)
with col_comp1:
# Select demographic group for comparison
comparison_group_v_options = [col for col in valid_demographic_cols if df_filtered[col].nunique() > 1] # Only those with multiple values
if comparison_group_v_options:
comparison_group_v = st.selectbox("Confronta Distribuzioni per:", comparison_group_v_options, key="dist_group")
else:
comparison_group_v = None
st.info("Nessuna colonna demografica con valori multipli per il confronto.")
with col_comp2:
dist_plot_type = st.radio("Tipo Grafico Distribuzione:", ["Violin Plot", "Box Plot"], horizontal=True, key="dist_plot_type")
if comparison_group_v: # Proceed only if a valid comparison group is selected
# Select categories to show (use averages calculated in sidebar)
categories_with_averages = avg_scores_per_category_f.index.unique().tolist()
if categories_with_averages:
default_cats_dist = avg_scores_per_category_f.nsmallest(3).index.tolist()
default_cats_dist = [cat for cat in default_cats_dist if cat in categories_with_averages] # Ensure defaults are valid
selected_cats_dist = st.multiselect("Seleziona Categorie da Visualizzare:", options=categories_with_averages, default=default_cats_dist, key="cat_dist")
if selected_cats_dist:
# Filter melted data for selected categories and ensure comparison group is not NA
df_dist = df_melted_f[(df_melted_f['Categoria'].isin(selected_cats_dist)) &
(df_melted_f[comparison_group_v].notna()) &
(df_melted_f[comparison_group_v] != 'Non specificato')] # Exclude 'Non specificato'? Optional.
if not df_dist.empty:
# Ensure hover data columns exist
hover_data = [col for col in valid_demographic_cols if col in df_dist.columns]
plot_func = px.violin if dist_plot_type == "Violin Plot" else px.box
caption_text = ("Il grafico a violino mostra la densità della distribuzione..." if dist_plot_type == "Violin Plot"
else "Il box plot mostra mediana, quartili...")
fig_dist = plot_func(df_dist, x='Categoria', y='Punteggio', color=comparison_group_v,
points=False, # 'all', False, 'outliers'
hover_data=hover_data,
category_orders={'Categoria': selected_cats_dist}, # Use selected order
template=PLOTLY_TEMPLATE, title=f"Distribuzione Punteggi per {comparison_group_v}")
fig_dist.update_layout(yaxis_range=[response_scale[0]-0.5, response_scale[1]+0.5])
st.plotly_chart(fig_dist, use_container_width=True)
st.caption(caption_text)
else:
st.warning(f"Nessun dato per le categorie e gruppo '{comparison_group_v}' selezionati.")
else:
st.info("Seleziona almeno una categoria per visualizzare il confronto.")
else:
st.warning("Medie per categoria non disponibili.")
else:
st.info("Dati o colonne demografiche insufficienti per i confronti.")
st.markdown("---")
# --- Driver Analysis ---
st.subheader("🎯 Analisi Driver (Impatto vs Performance)")
if not driver_df.empty: # Use pre-calculated driver_df from sidebar
driver_plot_type = st.radio("Visualizza Analisi Driver come:", ["Scatter Plot", "Density Heatmap", "Bar Chart (Top/Bottom)"], horizontal=True, key="driver_plot_type")
if driver_plot_type == "Scatter Plot":
# (Code for Scatter Plot - seems okay, uses driver_df)
fig_scatter_drivers = px.scatter(driver_df, x='Punteggio Medio', y='Correlazione',
color='Categoria',
size='Correlazione_Abs', size_max=18,
hover_data=['Domanda_Breve', 'Punteggio Medio', 'Correlazione'],
template=PLOTLY_TEMPLATE, title=f"Driver: Impatto (Corr. {corr_method_sidebar.capitalize()}) vs Performance")
avg_corr = driver_df['Correlazione'].mean()
avg_score_all_q = driver_df['Punteggio Medio'].mean()
fig_scatter_drivers.add_vline(x=avg_score_all_q, line_width=1, line_dash="dash", line_color="grey", annotation_text="Media Perf.")
fig_scatter_drivers.add_hline(y=avg_corr, line_width=1, line_dash="dash", line_color="grey", annotation_text="Media Impatto")
fig_scatter_drivers.update_layout(xaxis_title="Performance (Punteggio Medio Domanda)", yaxis_title=f"Impatto (Corr. {corr_method_sidebar.capitalize()} con Sod. Gen.)")
st.plotly_chart(fig_scatter_drivers, use_container_width=True)
st.caption("Quadranti (vs medie): Alto Dx (Verde)=Forza Chiave; Alto Sx (Giallo)=Priorità Alta; Basso Sx (Rosso)=Priorità Bassa; Basso Dx (Blu)=Mantenimento Secondario. Dimensione = forza correlazione.")
elif driver_plot_type == "Density Heatmap":
# (Code for Density Heatmap - seems okay, uses driver_df)
fig_density_driver = px.density_heatmap(driver_df, x="Punteggio Medio", y="Correlazione",
marginal_x="histogram", marginal_y="histogram",
text_auto=False,
template=PLOTLY_TEMPLATE, title=f"Densità Driver: Impatto (Corr. {corr_method_sidebar.capitalize()}) vs Performance")
avg_corr = driver_df['Correlazione'].mean()
avg_score_all_q = driver_df['Punteggio Medio'].mean()
fig_density_driver.add_vline(x=avg_score_all_q, line_width=1, line_dash="dash", line_color="grey")
fig_density_driver.add_hline(y=avg_corr, line_width=1, line_dash="dash", line_color="grey")
fig_density_driver.update_layout(xaxis_title="Performance (Punteggio Medio Domanda)", yaxis_title=f"Impatto (Corr. {corr_method_sidebar.capitalize()} con Sod. Gen.)")
st.plotly_chart(fig_density_driver, use_container_width=True)
st.caption("Mostra dove si concentrano le domande nel piano Impatto-Performance.")
elif driver_plot_type == "Bar Chart (Top/Bottom)":
# (Code for Bar Chart - seems okay, uses driver_df)
top_n = st.slider("Numero Top/Bottom Driver da mostrare:", min_value=3, max_value=15, value=8, key="driver_topn")
driver_df_unique = driver_df.loc[~driver_df.index.duplicated(keep='first')]
top_drivers = driver_df_unique.sort_values('Correlazione', ascending=False).head(top_n)
bottom_drivers = driver_df_unique.sort_values('Correlazione', ascending=True).head(top_n) # Gets most negative
# Combine and ensure uniqueness (in case a driver is both top N pos and top N neg in small datasets)
drivers_to_plot = pd.concat([top_drivers, bottom_drivers]).drop_duplicates().sort_values('Correlazione')
if not drivers_to_plot.empty:
fig_drivers_bar = px.bar(drivers_to_plot, x='Correlazione', y='Domanda_Breve', orientation='h',
color='Categoria', template=PLOTLY_TEMPLATE, height=max(400, len(drivers_to_plot)*30),
title=f"Top/Bottom {top_n} Domande per Correlazione ({corr_method_sidebar.capitalize()}) con Sod. Gen.")
fig_drivers_bar.update_layout(yaxis={'categoryorder':'total ascending'}, xaxis_title=f"Correlazione {corr_method_sidebar.capitalize()}", yaxis_title="Domanda")
st.plotly_chart(fig_drivers_bar, use_container_width=True)
st.caption(f"Mostra le domande con la correlazione ({corr_method_sidebar}) più forte (positiva e negativa) con la soddisfazione generale.")
else:
st.warning("Nessun dato driver da mostrare nel grafico a barre.")
else:
st.warning("Impossibile calcolare l'analisi dei driver. Verifica la presenza e la varianza della domanda di soddisfazione generale e delle altre domande numeriche.")
st.markdown("---")
# --- Anomaly Detection & Recommendations ---
st.subheader("⚠️ Rilevamento Potenziali Punti d'Attenzione & Suggerimenti 💡")
# Use melted data calculated earlier
if not df_melted_f.empty and valid_demographic_cols and not avg_scores_per_category_f.empty:
col_anom, col_sugg = st.columns(2)
with col_anom:
st.write("**Possibili Punti d'Attenzione (Z-Score per Gruppo/Categoria):**")
try:
# Calculate overall category means and std deviations on the *filtered* dataset
overall_cat_stats = df_melted_f.groupby('Categoria')['Punteggio'].agg(['mean', 'std']).reset_index()
# Rename columns *before* merge
overall_cat_stats = overall_cat_stats.rename(columns={'mean': 'mean_overall', 'std': 'std_overall'})
# Calculate group means within the filtered dataset
group_means = df_melted_f.groupby(valid_demographic_cols + ['Categoria'], observed=True)['Punteggio'].mean().reset_index()
# Rename columns *before* merge
group_means = group_means.rename(columns={'Punteggio': 'mean_group'})
if not group_means.empty and not overall_cat_stats.empty:
# Merge using the renamed columns
merged_stats = pd.merge(group_means, overall_cat_stats, on='Categoria', how='left')
# Calculate Z-score only if std is not NaN and greater than a small epsilon
merged_stats_valid_std = merged_stats[merged_stats['std_overall'].notna() & (merged_stats['std_overall'] > 0.01)].copy() # Use copy to avoid SettingWithCopyWarning
if not merged_stats_valid_std.empty:
# *** CORRECTION HERE: Use correct column names ***
merged_stats_valid_std['Z_Score'] = (merged_stats_valid_std['mean_group'] - merged_stats_valid_std['mean_overall']) / merged_stats_valid_std['std_overall']
z_score_threshold = st.slider("Soglia Z-Score per Attenzione:", min_value=1.0, max_value=3.0, value=1.75, step=0.25, key="zscore_thresh")
potential_anomalies = merged_stats_valid_std[abs(merged_stats_valid_std['Z_Score']) > z_score_threshold].sort_values(by='Z_Score')
if not potential_anomalies.empty:
st.write(f"Gruppi/Categorie con punteggio medio deviante (> {z_score_threshold:.2f} dev. std. dalla media della categoria):")
for _, row in potential_anomalies.head(10).iterrows(): # Limit display
group_desc_parts = [f"{col}={row[col]}" for col in valid_demographic_cols]
group_desc = " / ".join(group_desc_parts)
direction = "⚠️ Basso" if row['Z_Score'] < 0 else "✅ Alto"
# Use mean_group and Z_Score from the row
st.markdown(f"- {direction}: **{group_desc}** in **'{row['Categoria']}'** (Media Gruppo: {row['mean_group']:.2f}, Z: {row['Z_Score']:.2f})")
else:
st.info(f"Nessun punto d'attenzione rilevato con soglia Z-Score > {z_score_threshold:.2f} nei dati filtrati.")
else:
st.info("Deviazione standard non calcolabile o nulla per le categorie, impossibile calcolare Z-score.")
else:
st.info("Dati insufficienti per calcolare medie di gruppo o statistiche di categoria.")
except KeyError as e:
st.error(f"Errore Chiave durante il calcolo Z-Score: '{e}'. Verifica i nomi delle colonne dopo il merge.")
st.dataframe(merged_stats.head()) # Display merged df head for debugging
except Exception as e:
st.error(f"Errore generico durante il calcolo Z-Score: {e}")
with col_sugg:
# Suggestions part remains the same, using driver_df calculated in sidebar
st.write("**Suggerimenti Basati sui Driver & Punteggi Bassi:**")
if not avg_scores_per_category_f.empty:
lowest_cat_name = avg_scores_per_category_f.index[0]
lowest_cat_score = avg_scores_per_category_f.iloc[0]
st.markdown(f"**Area più debole (media bassa):** '{lowest_cat_name}' ({lowest_cat_score:.2f}).")
if not driver_df.empty:
avg_corr = driver_df['Correlazione'].mean()
avg_score_all_q = driver_df['Punteggio Medio'].mean()
low_score_threshold = avg_score_all_q
high_impact_threshold = avg_corr
critical_drivers = driver_df[
(driver_df['Punteggio Medio'] < low_score_threshold) &
(driver_df['Correlazione'] > high_impact_threshold)
].sort_values('Correlazione', ascending=False)
if not critical_drivers.empty:
st.markdown("**Priorità Alte (Bassa Performance, Alto Impatto):**")
for _, row in critical_drivers.head(5).iterrows():
st.markdown(f"- *{row['Domanda_Breve']}* (Cat: {row['Categoria']}, Score: {row['Punteggio Medio']:.2f}, Corr: {row['Correlazione']:.2f})")
st.warning("Intervenire su queste domande potrebbe avere il maggior impatto positivo sulla soddisfazione generale.")
else:
st.info("Nessuna domanda trovata nel quadrante 'Priorità Alte' con le soglie attuali.")
# Generic suggestions
suggestions = {
"Stress e benessere": "Considerare iniziative per la gestione dello stress, flessibilità lavorativa, e supporto psicologico.",
# ... (rest of suggestions map) ...
"Apertura e inclusione": "Programmi D&I, garantire libertà di espressione e sicurezza psicologica."
}
default_suggestion = "Approfondire le cause specifiche tramite focus group o interviste mirate."
st.markdown("**Possibili Azioni Generiche per l'Area più Debole:**")
st.info(suggestions.get(lowest_cat_name, default_suggestion))
else: st.write("Nessun dato medio per categoria disponibile per generare suggerimenti.")
else:
st.info("Dati insufficienti per rilevare anomalie o fornire suggerimenti.")
# ==============================================================================
# --- TAB Advanced: More Complex Visualizations ---
# ==============================================================================
with tab_advanced:
st.header("📈 Grafici Avanzati (Filtrati)")
if df_filtered is None or df_filtered.empty:
st.warning("Nessun dato disponibile con i filtri selezionati.")
elif not numeric_question_cols:
st.warning("Nessuna domanda numerica trovata per le analisi avanzate.")
else:
# Use the melted data prepared in the Comparisons tab if available
if 'df_melted_f' not in locals() or df_melted_f.empty:
# Try to recreate df_melted_f if not available
numeric_cols_in_filtered = [col for col in numeric_question_cols if col in df_filtered.columns]
valid_demographic_cols = [col for col in demographic_cols if col in df_filtered.columns]
if valid_demographic_cols and numeric_cols_in_filtered:
df_melted_f = get_melted_data(df_filtered, valid_demographic_cols, numeric_cols_in_filtered, question_to_category_map)
else:
df_melted_f = pd.DataFrame()
if df_melted_f.empty and not numeric_cols_in_filtered: # Check again if still empty or no numerics
st.warning("Dati insufficienti per i grafici avanzati.")
else:
# --- 1. Correlation Heatmap ---
st.subheader("🔥 Heatmap di Correlazione tra Domande Numeriche")
corr_method_options = ['pearson']
if SCIPY_AVAILABLE:
corr_method_options.append('spearman')
corr_method_adv = st.radio("Metodo Correlazione:", corr_method_options, horizontal=True, key="corr_method_adv")
numeric_cols_in_filtered_adv = [col for col in numeric_question_cols if col in df_filtered.columns and df_filtered[col].nunique(dropna=True) > 1]
if len(numeric_cols_in_filtered_adv) > 1:
# Etichette univoche e leggibili
corr_labels = {
q: (f"{str(q)[:27]}..." if len(str(q)) > 30 else str(q)) + f" [{i}]"
for i, q in enumerate(numeric_cols_in_filtered_adv)
}
df_corr = df_filtered[numeric_cols_in_filtered_adv].rename(columns=corr_labels)
try:
corr_matrix = df_corr.corr(method=corr_method_adv)
if not corr_matrix.empty:
fig_heatmap = px.imshow(
corr_matrix,
text_auto=".2f",
aspect="auto",
color_continuous_scale='RdBu_r',
range_color=[-1, 1],
template=PLOTLY_TEMPLATE,
title=f"Heatmap Correlazione ({corr_method_adv.capitalize()}) tra Domande"
)
heatmap_height = max(600, len(numeric_cols_in_filtered_adv) * 20)
fig_heatmap.update_layout(height=heatmap_height, xaxis_tickangle=-45)
st.plotly_chart(fig_heatmap, use_container_width=True)
st.caption("Rosso = correlazione negativa, Blu = correlazione positiva.")
else:
st.warning("Matrice di correlazione vuota.")
except Exception as e:
st.warning(f"Errore nel calcolo heatmap: {e}")
else:
st.info("Servono almeno due domande numeriche con varianza per la heatmap.")
st.markdown("---")
# --- 2. Radar Chart ---
st.subheader("🕸️ Radar Chart: Confronto Medie Categorie per Gruppo Demografico")
if not avg_scores_per_category_f.empty and valid_demographic_cols and not df_melted_f.empty:
radar_demo_options = [col for col in valid_demographic_cols if df_filtered[col].nunique() > 1]
if radar_demo_options:
radar_demo_col = st.selectbox("Seleziona Gruppo Demografico per Confronto Radar:", radar_demo_options, key="radar_demo")
available_groups = sorted(df_filtered[radar_demo_col].astype(str).unique())
available_groups = [g for g in available_groups if g != 'Non specificato'] # Exclude 'Non specificato'?
if len(available_groups) > 1:
groups_to_compare = st.multiselect(f"Seleziona '{radar_demo_col}' da confrontare:", options=available_groups, default=available_groups[:min(len(available_groups), 3)], key="radar_groups")
if groups_to_compare:
radar_data = df_melted_f[df_melted_f[radar_demo_col].isin(groups_to_compare)]
avg_radar = radar_data.groupby(['Categoria', radar_demo_col], observed=True)['Punteggio'].mean().unstack()
avg_radar = avg_radar.dropna(axis=0, how='all') # Drop categories with no data
if not avg_radar.empty:
categories_radar = avg_radar.index.tolist()
fig_radar = go.Figure()
color_sequence = px.colors.qualitative.Plotly # Use a color sequence
for i, group in enumerate(groups_to_compare):
if group in avg_radar.columns:
fig_radar.add_trace(go.Scatterpolar(
r=avg_radar[group].values, theta=categories_radar, fill='toself', name=str(group),
line_color=color_sequence[i % len(color_sequence)] # Cycle through colors
))
min_scale_radar, max_scale_radar = response_scale if response_scale else (1, 6)
fig_radar.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[min_scale_radar-0.5, max_scale_radar+0.5])),
showlegend=True, title=f"Confronto Medie Categorie Radar per {radar_demo_col}", template=PLOTLY_TEMPLATE )
st.plotly_chart(fig_radar, use_container_width=True)
else: st.warning(f"Nessun dato medio disponibile per i gruppi selezionati.")
else: st.info(f"Seleziona almeno un gruppo.")
else: st.info(f"Solo un gruppo disponibile in '{radar_demo_col}'.")
else: st.info("Nessuna colonna demografica con valori multipli per il confronto Radar.")
else: st.info("Dati insufficienti (medie categorie, demo, melted) per il grafico Radar.")
st.markdown("---")
# --- 3. Parallel Coordinates Plot ---
# (Code for Parallel Coordinates - kept similar, relies on df_melted_f)
st.subheader("|| Parrallel Coordinates: Pattern Medie Categorie per Gruppo")
st.warning("Attenzione: Questo grafico può essere lento o illeggibile con molti dati/categorie.")
if not avg_scores_per_category_f.empty and valid_demographic_cols and not df_melted_f.empty:
cats_parallel_options = avg_scores_per_category_f.index.unique().tolist()
if cats_parallel_options:
default_cats_parallel = cats_parallel_options[:min(len(cats_parallel_options), 8)]
cats_parallel = st.multiselect("Seleziona Categorie (Dimensioni):", cats_parallel_options, default=default_cats_parallel, key="par_cats")
if cats_parallel:
parallel_demo_options = [col for col in valid_demographic_cols if df_filtered[col].nunique() > 1]
if parallel_demo_options:
parallel_demo_col = st.selectbox("Colora Linee per Gruppo Demografico:", parallel_demo_options, key="par_demo")
# Calculate mean scores per selected category and chosen demo group
df_parallel_prep = df_melted_f[df_melted_f['Categoria'].isin(cats_parallel)]
df_parallel = df_parallel_prep.groupby([parallel_demo_col, 'Categoria'], observed=True)['Punteggio'].mean().unstack()
df_parallel = df_parallel.dropna().reset_index()
if not df_parallel.empty and parallel_demo_col in df_parallel.columns:
# Map group names to numerical values for continuous color scale
unique_groups_par = df_parallel[parallel_demo_col].unique()
group_map = {name: i for i, name in enumerate(unique_groups_par)}
df_parallel['color_val'] = df_parallel[parallel_demo_col].map(group_map)
dimensions = []
for cat in cats_parallel:
if cat in df_parallel.columns:
dimensions.append(dict(
range = [response_scale[0], response_scale[1]] if response_scale else [1,6],
label = str(cat)[:20] + '...' if len(str(cat))>20 else str(cat),
values = df_parallel[cat] ))
if dimensions:
color_palette_par = px.colors.qualitative.Plotly
fig_parallel = go.Figure(data=
go.Parcoords(
line = dict(color = df_parallel['color_val'],
colorscale = color_palette_par, # Use qualitative scale directly
showscale = False),
dimensions = dimensions ))
fig_parallel.update_layout( title=f"Medie Categorie per {parallel_demo_col} (Parallel Coordinates)", template=PLOTLY_TEMPLATE)
st.plotly_chart(fig_parallel, use_container_width=True)
# Manual legend
st.write(f"**Legenda Colori ({parallel_demo_col}):**")
cols_legend = st.columns(min(len(group_map), 5))
i = 0
for name, num in group_map.items():
color = color_palette_par[num % len(color_palette_par)]
with cols_legend[i % min(len(group_map), 5)]:
st.markdown(f"<span style='color:{color}; font-weight:bold;'>■</span> {name}", unsafe_allow_html=True)
i += 1
else: st.warning("Nessuna dimensione valida per Parallel Coordinates.")
else: st.warning(f"Nessun dato medio aggregato per {parallel_demo_col}.")
else: st.info("Nessuna colonna demografica con valori multipli per colorare le linee.")
else: st.info("Seleziona almeno una categoria (dimensione).")
else: st.info("Nessuna categoria disponibile per Parallel Coordinates.")
else: st.info("Dati insufficienti (medie categorie, demo, melted) per Parallel Coordinates.")
st.markdown("---")
# --- 4. Stacked Area Chart ---
# (Code for Stacked Area Chart - kept similar, relies on df_melted_f)
st.subheader("📊 Stacked Area Chart: Distribuzione Risposte per Categoria su Gruppo Ordinato")
if not df_melted_f.empty and valid_demographic_cols:
ordered_demo_options = [col for col in valid_demographic_cols if 'Eta' in col or 'Anzianita' in col]
if not ordered_demo_options: ordered_demo_options = valid_demographic_cols # Fallback
if ordered_demo_options:
area_demo_col = st.selectbox("Seleziona Gruppo Demografico Ordinato:", ordered_demo_options, key="area_demo")
area_cat_options = avg_scores_per_category_f.index.unique().tolist()
if area_cat_options:
area_category = st.selectbox("Seleziona Categoria:", area_cat_options, key="area_cat")
df_area_prep = df_melted_f[(df_melted_f['Categoria'] == area_category) & df_melted_f[area_demo_col].notna()].copy()
if not df_area_prep.empty:
df_area_prep['Sentiment'] = df_area_prep['Punteggio'].apply(categorize_score)
df_area = df_area_prep.groupby([area_demo_col, 'Sentiment'], observed=True).size().reset_index(name='Conteggio')
df_area['Percentuale'] = df_area.groupby(area_demo_col)['Conteggio'].transform(lambda x: x / float(x.sum()) * 100 if x.sum() > 0 else 0)
category_orders = {}
group_order = None
if 'Eta' in area_demo_col:
age_order_guess = ['Fino a 30 anni', '31-40 anni', '41-50 anni', 'Oltre i 50 anni', 'Non specificato']
actual_groups = df_area[area_demo_col].unique()
group_order = [g for g in age_order_guess if g in actual_groups]
group_order.extend(sorted([g for g in actual_groups if g not in age_order_guess]))
category_orders={area_demo_col: group_order}
# Ensure Sentiment order for stacking
sentiment_order = ["Critico", "Neutrale", "Positivo", "Non Risposto"]
category_orders['Sentiment'] = [s for s in sentiment_order if s in df_area['Sentiment'].unique()]
plot_colors = BUCKET_COLORS.copy()
plot_colors["Non Risposto"] = "#bbbbbb"
if not df_area.empty:
fig_area = px.area(df_area, x=area_demo_col, y='Percentuale', color='Sentiment',
title=f"Distribuzione Sentiment (%) per '{area_category}' per {area_demo_col}",
labels={'Percentuale': '% Rispondenti'},
category_orders=category_orders,
color_discrete_map=plot_colors,
template=PLOTLY_TEMPLATE)
fig_area.update_layout(yaxis_range=[0, 100], yaxis_ticksuffix="%")
st.plotly_chart(fig_area, use_container_width=True)
else: st.warning("Nessun dato aggregato per l'Area Chart.")
else: st.warning(f"Nessun dato trovato per la categoria '{area_category}'.")
else: st.info("Nessuna categoria valida trovata.")
else: st.info("Nessuna colonna demografica disponibile per l'Area Chart.")
else: st.info("Dati insufficienti (melted, demo) per l'Area Chart.")
# --- Download Button ---
st.sidebar.divider()
st.sidebar.subheader("📥 Download Dati Filtrati")
if df_filtered is not None and not df_filtered.empty:
output = BytesIO()
try:
df_to_download = df_filtered.copy()
df_to_download.to_csv(output, index=False, encoding='utf-8', sep=';')
output.seek(0)
st.sidebar.download_button(label="Scarica Dati Filtrati Correnti (CSV)", data=output,
file_name='dati_sondaggio_filtrati_avanzato.csv', mime='text/csv', key='download_csv')
except Exception as e:
st.sidebar.error(f"Errore durante la creazione del CSV: {e}")
else:
st.sidebar.info("Nessun dato filtrato da scaricare.")
# --- Footer ---
st.markdown("---")
# Use a dynamic timestamp
try:
current_time_str = pd.Timestamp.now(tz='Europe/Rome').strftime('%Y-%m-%d %H:%M:%S %Z')
except Exception: # Fallback if timezone fails
current_time_str = pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')
st.caption(f"Dashboard Analisi Clima")
# Altrimenti (se uploaded_file is None), non mostra nulla tranne l'uploader
else:
st.title("🚀 Dashboard Analisi Clima")
st.info("Per iniziare, carica un file CSV usando il widget qui sopra.") |