File size: 12,534 Bytes
08c80af
631c799
08c80af
 
 
 
 
 
 
12e2c64
08c80af
e506679
08c80af
 
 
 
 
 
 
 
 
 
 
 
 
a6058bc
08c80af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2ec7d4
08c80af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e2c64
08c80af
 
 
 
 
 
 
 
 
 
 
 
12e2c64
08c80af
 
12e2c64
08c80af
 
 
 
 
12e2c64
08c80af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c17cf76
08c80af
 
 
 
 
c17cf76
08c80af
 
f2ec7d4
 
08c80af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e2c64
08c80af
 
 
 
 
 
 
 
 
 
 
 
 
 
7376a17
08c80af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e2c64
08c80af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from io import BytesIO
from bs4 import BeautifulSoup
from collections import namedtuple
import requests
import re
import pandas as pd
import numpy as np
import time
import streamlit as st

prezzo_al_mq = 0

class Immobiliare:
    
    def __init__(self, url, *,
                 verbose=True,
                 min_house_cost=10_000,
                 browse_all_pages=True,
                 area_not_found=0,
                 price_not_found=np.nan,
                 floor_not_found=0,
                 car_not_found=0,
                 energy_not_found="n/a",
                 invalid_price_per_area=0,
                 wait=60):
        
        self.url = url
        self.verbose = verbose
        self.min_house_cost = min_house_cost
        self.browse_all_pages = browse_all_pages
        self.wait = wait / 1000
        
        self.area_not_found = area_not_found
        self.price_not_found = price_not_found
        self.floor_not_found = floor_not_found
        self.car_not_found = car_not_found
        self.energy_not_found = energy_not_found
        self.invalid_price_per_area = invalid_price_per_area
        
    def _say(self, *args, **kwargs):
        if self.verbose:
            print(*args, **kwargs)

    def get_all_urls(self):
        pattern = re.compile(r"\d+\/$")
        urls_ = []
        
        # first page
        self._say("Processing page 1")
        page = self._get_page(self.url)
        
        page.seek(0)
        soup = BeautifulSoup(page, "html.parser")
        
        for link in soup.find_all("a"):
            time.sleep(self.wait)
            l = link.get("href")

            if l is None:
                continue

            if "https" in l and "annunci" in l:
                if pattern.search(l):
                    urls_.append(l)
                    
        if self.browse_all_pages:
            for i in range(2, 10_000):
                self._say(f"Processing page {i}")
                curr_url = self.url + f"&pag={i}"

                t = self._get_text(curr_url).lower()

                if "404 not found" in t or "non è presente" in t:
                    self.urls_ = urls_
                    break

                else:
                    page = self._get_page(curr_url)
                    page.seek(0)
                    soup = BeautifulSoup(page, "html.parser")

                for link in soup.find_all("a"):
                    l = link.get("href")

                    if l is None:
                        continue

                    if "https" in l and "annunci" in l:
                        if pattern.search(l):
                            urls_.append(l)

        self.urls_ = urls_    
        self._say("All retrieved urls in attribute 'urls_'")
        self._say(f"Found {len(urls_)} houses matching criteria.")

    @staticmethod
    def _get_page(url):
        req = requests.get(url, allow_redirects=False)
        page = BytesIO()
        page.write(req.content)
        return page
    
    @staticmethod
    def _get_text(sub_url):
        req = requests.get(sub_url, allow_redirects=False)
        page = BytesIO()
        page.write(req.content)
        page.seek(0)
        soup = BeautifulSoup(page, "html.parser")
        text = soup.get_text()
        t = text.replace("\n", "")
        for _ in range(50):
            t = t.replace("  ", " ")
        return t
    
    def _get_data(self, sub_url):
        t = self._get_text(sub_url).lower()
        
        # costo appartamento
        cost_patterns = (
            r"€ (\d+\.\d+\.\d+)", #if that's more than 1M €
            r"€ (\d+\.\d+)",
        )
        
        cost = None
        locali = None
        for pattern in cost_patterns:
            cost_pattern = re.compile(pattern)
            try:
                cost = cost_pattern.search(t)
                locali = str(cost.group(1).replace(".", ""))[-1]
                cost = str(cost.group(1).replace(".", ""))[:-1]
                #cost = cost.group(1).replace(".", "")
                break
            except AttributeError:
                continue
            
        if cost is None:
            if "prezzo su richiesta" in t:
                self._say(f"Price available upon request for {sub_url}")
                cost = self.price_not_found
            else:
                self._say(f"Can't get price for {sub_url}")
                cost = self.price_not_found
        
        if cost is not None and cost is not self.price_not_found:
            if int(cost) < self.min_house_cost:
                if "prezzo su richiesta" in t:
                    self._say(f"Price available upon request for {sub_url}")
                    cost = self.price_not_found
                else:
                    self._say(f"Too low house price: {int(cost)}? for {sub_url}")
                    cost = self.price_not_found

        # piano
        floor_patterns = (
            r"piano (\d{1,2})",
            r"(\d{1,2}) piano",
            r"(\d{1,2}) piani",
        )
        
        floor = None
        for pattern in floor_patterns:
            floor_pattern = re.compile(pattern)
            floor = floor_pattern.search(t)
            if floor is not None:
                floor = floor.group(1)
                break
        
        if "piano terra" in t:
            floor = 1 
        
        ultimo = "ultimo" in t
        
        # metri quadri
        
        area_pattern = re.compile(r"(\d+) m²")
        try:
            area = area_pattern.search(t)
            area = area.group(1)
        except AttributeError:
            area = self.area_not_found
            if "asta" in t:
                self._say(f"Auction house: no area info {sub_url}")
            else:
                self._say(f"Can't get area info from url {sub_url}")
        
        # classe energetica
        energy_patterns = (
            r"energetica (\D{1,2}) ",
            r"energetica(\S{1,2})",
        )
        
        def energy_acceptable(stringlike):
            if not stringlike.startswith(("A", "B", "C", "D", "E", "F", "G")):
                return False
            else:
                if len(stringlike) == 1:
                    return True
                else:
                    if not stringlike.endswith(
                        ("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "+")
                    ):
                        return False
                    else:
                        return True
        
        energy = None
        for i, pattern in enumerate(energy_patterns):
            energy_pattern = re.compile(pattern)
            energy = energy_pattern.search(t)
            if energy is not None:             
                energy = energy.group(1).upper()
                if energy_acceptable(energy):
                        break
        
        if energy is None or not energy_acceptable(energy):
            if "in attesa di certificazione" in t:
                self._say(f"Energy efficiency still pending for {sub_url} ")
                energy = self.energy_not_found
            else:
                self._say(f"Can't get energy efficiency from {sub_url}")
                energy = self.energy_not_found
                
        # posto auto
        car_patterns = (
            r"post\S auto (\d{1,2})",
        )
        
        car = None
        for pattern in car_patterns:
            car_pattern = re.compile(pattern)
            car = car_pattern.search(t)
            if car is not None:
                car = car.group(1)
                break
            
        if car is None:
            available_upon_request = re.compile(r"possibilit\S.{0,10}auto")
            if available_upon_request.search(t) is not None:
                self._say(f"Car spot/box available upon request for {sub_url}")
                car = 0
            else:
                car = self.car_not_found
        
        # €/m²
        try:
            price_per_area = round(int(cost) / int(area), 1)
            differenza = prezzo_al_mq - price_per_area
            vantaggio = (differenza / prezzo_al_mq) * 120
            vantaggio = max(0, vantaggio)
            vantaggio = int(vantaggio)
        except:
            price_per_area = self.energy_not_found
            vantaggio = 0
        
        
        # packing the results
        House = namedtuple(
            "House", [
                "Vantaggio",
                "Prezzo_Mq",
                "Prezzo",
                "Superficie",
                "Locali",
                "Piano",
                #"ultimo",
                "Url"
                #"energy",
                #"posto_auto"
            ]
        )
        
        res = House(
            vantaggio, 
            price_per_area,
            cost,
            area,
            #ultimo,
            locali, 
            floor,
            sub_url
            #energy,
            #car
        )

        return res
    
    def find_all_houses(self):
        if not hasattr(self, "urls_"):
            self.get_all_urls()
        
        all_results = []
        for url in self.urls_:
            try:
                all_results.append(self._get_data(url))
            except:
                print(f"offending_url='{url}'")
                raise
        
        self.df_ = pd.DataFrame(all_results)
        self._say("Results stored in attribute 'df_'")

# Funzione di styling per evidenziare in rosso i valori inferiori alla variabile
def evidenzia_in_rosso(valore, soglia):
    if valore < soglia:
        return 'background-color: red; color: white'
    return ''

st.set_page_config(layout="wide")
# Streamlit interface

st.title('🏠 Immobiliare A.I. ')
st.write("##### Il tuo assistente di intelligenza artificiale per la ricerca di occasioni immobiliari")
with st.expander("Informazioni"):
    st.write("Immobiliare A.I. è la webapp che semplifica la ricerca di immobili, grazie a algoritmi avanzati che calcolano il vantaggio di ogni offerta. Trova le migliori occasioni sul mercato con analisi precise e personalizzate. Scopri l’immobile giusto per te con facilità e sicurezza!")

cerca_premuto = False
# Input field for 'comune'
with st.sidebar: 
    st.title("Filtri")
    comune_input = st.text_input("Comune", 'lonato del garda')
    prezzo_al_mq = st.number_input("Prezzo Medio al Mq", 2500)
    prezzo_minimo = st.sidebar.slider("Prezzo Minimo", min_value=0, max_value=1000, value=200)
    prezzo_massimo = st.sidebar.slider("Prezzo Massimo", min_value=0, max_value=1000, value=230)

    locali = list(range(1, 21))  # Intervallo da 1 a 10
    
    # Select slider unico per selezionare l'intervallo del numero di locali
    locali_range = st.sidebar.select_slider(
        "Locali",
        options=locali,
        value=(locali[2], locali[4])  # Valore iniziale, da 1 a 5 locali
    )

    # Dividi il range in minimo e massimo numero di locali
    locali_minimo, locali_massimo = locali_range
    prezzo_minimo = prezzo_minimo*1000
    prezzo_massimo = prezzo_massimo*1000
    cerca_premuto = st.button("Cerca", use_container_width=True, type='primary')

if cerca_premuto:
    if comune_input:
        comune = comune_input.replace(" ", "-")
        
        
        url = f"https://www.immobiliare.it/vendita-case/{comune}/?prezzoMinimo={prezzo_minimo}&prezzoMassimo={prezzo_massimo}&localiMinimo={locali_minimo}&localiMassimo={locali_massimo}&random=123456"
        #st.write(f"Seraching: {url}")
        with st.spinner("Ricerca immobiliare in corso..."):
            case = Immobiliare(url)
            case.find_all_houses()
        df = case.df_
        df = df.sort_values(by="Prezzo_Mq", ascending=True)

        st.dataframe(df, hide_index=True, use_container_width=True, 
                    column_config ={
                        "Vantaggio": st.column_config.ProgressColumn(
                            "Vantaggio",
                            help="Vantaggio in %",
                            format='%f',
                            min_value=0,
                            max_value=100,
                        ),
                        "Prezzo_Mq": " €/Mq",
                        "Prezzo": "Prezzo Totale",
                        "Superficie": "Superficie",
                        "Locali": "Locali",
                        "Piano": "Piano",
                        "Url": st.column_config.LinkColumn("App URL")
                    })
        st.success("Elaborazione Completata")
    else:
        st.error("Per favore, inserisci il nome di un comune.")