from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.9, repetition_penalty=1.0, ): temperature = max(float(temperature), 0.01) top_p = max(min(float(top_p), 1.0), 0.0) repetition_penalty = max(float(repetition_penalty), 0.01) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) # Generate text response = client.text_generation(formatted_prompt, **generate_kwargs) generated_text = response["generated_text"] return generated_text iface = gr.Interface( fn=generate, inputs=["text", "text", gr.inputs.Slider(0.1, 2.0), gr.inputs.Slider(100, 50000), gr.inputs.Slider(0.1, 1.0)], outputs="text", title="Text Generation" ) iface.launch()