from huggingface_hub import InferenceClient import gradio as gr client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def my_inference_function(name): return "Hello " + name + "!" gradio_interface = gr.Interface( fn=my_inference_function, inputs="text", outputs="text", examples=[ ["Jill"], ["Sam"] ], title="REST API with Gradio and Huggingface Spaces", description="This is a demo of how to build an AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.", article="© Tom Söderlund 2022" ) gradio_interface.launch() def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.2, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output mychatbot = gr.Chatbot( avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) demo = gr.ChatInterface(fn=generate, chatbot=mychatbot, title="Matteo's Mixtral 8x7b Chat", retry_btn=None, undo_btn=None ) demo.queue().launch(show_api=False)