Mattral commited on
Commit
fec4cfa
·
verified ·
1 Parent(s): ce22e4f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +139 -0
app.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import speech_recognition as sr
3
+ from huggingface_hub import InferenceClient
4
+ import random
5
+ import textwrap
6
+ import pyttsx3
7
+
8
+ # Initialize the speech recognition and TTS engine
9
+ recognizer = sr.Recognizer()
10
+ tts_engine = pyttsx3.init()
11
+
12
+ # Define the model to be used
13
+ model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
14
+ client = InferenceClient(model)
15
+
16
+ # Embedded system prompt
17
+ system_prompt_text = (
18
+ "You are a smart and helpful co-worker of Thailand based multi-national company PTT, "
19
+ "and PTTEP. You help with any kind of request and provide a detailed answer to the question. "
20
+ "But if you are asked about something unethical or dangerous, you must refuse and provide a safe and respectful way to handle that."
21
+ )
22
+
23
+ # Read the content of the info.md file with UTF-8 encoding
24
+ with open("info.md", "r", encoding="utf-8") as file:
25
+ info_md_content = file.read()
26
+
27
+ # Chunk the info.md content into smaller sections
28
+ chunk_size = 2500 # Adjust this size as needed
29
+ info_md_chunks = textwrap.wrap(info_md_content, chunk_size)
30
+
31
+ def get_all_chunks(chunks):
32
+ return "\n\n".join(chunks)
33
+
34
+ def format_prompt_mixtral(message, history, info_md_chunks):
35
+ prompt = "<s>"
36
+ all_chunks = get_all_chunks(info_md_chunks)
37
+ prompt += f"{all_chunks}\n\n" # Add all chunks of info.md at the beginning
38
+ prompt += f"{system_prompt_text}\n\n" # Add the system prompt
39
+
40
+ if history:
41
+ for user_prompt, bot_response in history:
42
+ prompt += f"[INST] {user_prompt} [/INST]"
43
+ prompt += f" {bot_response}</s> "
44
+ prompt += f"[INST] {message} [/INST]"
45
+ return prompt
46
+
47
+ def chat_inf(prompt, history, seed, temp, tokens, top_p, rep_p):
48
+ generate_kwargs = dict(
49
+ temperature=temp,
50
+ max_new_tokens=tokens,
51
+ top_p=top_p,
52
+ repetition_penalty=rep_p,
53
+ do_sample=True,
54
+ seed=seed,
55
+ )
56
+
57
+ formatted_prompt = format_prompt_mixtral(prompt, history, info_md_chunks)
58
+ stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
59
+ output = ""
60
+ for response in stream:
61
+ output += response.token.text
62
+ yield [(prompt, output)]
63
+ history.append((prompt, output))
64
+ yield history
65
+
66
+ def clear_fn():
67
+ return None, None
68
+
69
+ rand_val = random.randint(1, 1111111111111111)
70
+
71
+ def check_rand(inp, val):
72
+ if inp:
73
+ return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111))
74
+ else:
75
+ return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
76
+
77
+ def recognize_speech(audio):
78
+ with sr.AudioFile(audio) as source:
79
+ audio_data = recognizer.record(source) # Record the audio
80
+ try:
81
+ # Recognize the speech using Google's API
82
+ text = recognizer.recognize_google(audio_data)
83
+ return text
84
+ except sr.UnknownValueError:
85
+ return "Sorry, I could not understand the audio."
86
+ except sr.RequestError:
87
+ return "Error: Could not request results from the speech recognition service."
88
+
89
+ def speak_text(text):
90
+ # Convert text to speech using pyttsx3
91
+ tts_engine.save_to_file(text, 'output.mp3') # Save the TTS audio
92
+ tts_engine.runAndWait() # Wait until TTS is done
93
+
94
+ with gr.Blocks() as app:
95
+ gr.HTML("""<center><h1 style='font-size:xx-large;'>PTT Chatbot</h1><br><h3>running on Huggingface Inference</h3><br><h7>EXPERIMENTAL</center>""")
96
+
97
+ with gr.Row():
98
+ chat = gr.Chatbot(height=500)
99
+
100
+ with gr.Group():
101
+ with gr.Row():
102
+ with gr.Column(scale=3):
103
+ inp = gr.Audio(type="filepath") # Audio input
104
+ with gr.Row():
105
+ with gr.Column(scale=2):
106
+ btn = gr.Button("Chat")
107
+ with gr.Column(scale=1):
108
+ with gr.Group():
109
+ stop_btn = gr.Button("Stop")
110
+ clear_btn = gr.Button("Clear")
111
+ with gr.Column(scale=1):
112
+ with gr.Group():
113
+ rand = gr.Checkbox(label="Random Seed", value=True)
114
+ seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val)
115
+ tokens = gr.Slider(label="Max new tokens", value=3840, minimum=0, maximum=8000, step=64, interactive=True, visible=True, info="The maximum number of tokens")
116
+ temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
117
+ top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
118
+ rep_p = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
119
+
120
+ hid1 = gr.Number(value=1, visible=False)
121
+
122
+ output_audio = gr.Audio(label="Output Audio", type="filepath", interactive=False) # Create an output audio component
123
+
124
+ def handle_chat(audio_input, chat_history, seed, temp, tokens, top_p, rep_p):
125
+ user_message = recognize_speech(audio_input) # Recognize speech input
126
+ if "Sorry" in user_message: # Check for error in recognition
127
+ return chat_history, user_message, None
128
+ response_gen = chat_inf(user_message, chat_history, seed, temp, tokens, top_p, rep_p)
129
+ response = next(response_gen)[0][-1][1] # Get the response text
130
+ speak_text(response) # Speak the response text
131
+ return chat_history + [(user_message, response)], response, 'output.mp3' # Return the filename for audio output
132
+
133
+ go = btn.click(handle_chat, [inp, chat, seed, temp, tokens, top_p, rep_p], [chat, inp, output_audio]) # Use output_audio instead of "output.mp3"
134
+
135
+ stop_btn.click(None, None, None, cancels=[go])
136
+ clear_btn.click(clear_fn, None, [inp, chat])
137
+
138
+ app.queue(default_concurrency_limit=10).launch(share=True, auth=("admin", "0112358"))
139
+