Spaces:
Sleeping
Sleeping
File size: 7,036 Bytes
36eb6b1 2edc4bc ff96349 36eb6b1 233f32d 36eb6b1 233f32d ff96349 233f32d ff96349 36eb6b1 233f32d ff96349 233f32d ff96349 233f32d ff96349 233f32d 36eb6b1 2edc4bc ff96349 36eb6b1 233f32d ff96349 233f32d 36eb6b1 233f32d ff96349 2edc4bc ff96349 2edc4bc 233f32d ff96349 233f32d ff96349 233f32d ff96349 233f32d ff96349 233f32d ff96349 233f32d ff96349 233f32d ff96349 233f32d ff96349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
from typing import Iterator, List, Tuple
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftConfig, PeftModel
base_model = "mistralai/Mistral-7B-Instruct-v0.2"
adapter = "GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
base_model,
add_bos_token=True,
trust_remote_code=True,
padding_side='left'
)
# Create peft model using base_model and finetuned adapter
config = PeftConfig.from_pretrained(adapter)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
load_in_4bit=True,
device_map='auto',
torch_dtype='auto')
model = PeftModel.from_pretrained(model, adapter)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
DEFAULT_SYSTEM_PROMPT = "You are Phoenix AI Healthcare. You are professional, you are polite, give only truthful information and are based on the Mistral-7B model from Mistral AI about Healtcare and Wellness. You can communicate in different languages equally well."
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 4000
DESCRIPTION = """
# Simple Healthcare Chatbot
### Powered by Mistral-7B with Healthcare Fine-Tuning
"""
def clear_and_save_textbox(message: str) -> tuple[str, str]:
return "", message
def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]:
history.append((message, ""))
return history
def delete_prev_fn(history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ""
return history, message or ""
def generate(
message: str,
history_with_input: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
) -> Iterator[list[tuple[str, str]]]:
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError("Max new tokens exceeded")
history = history_with_input[:-1]
conversation = [{"role": "system", "content": system_prompt}] + \
[{"role": "user", "content": user_input} for user_input, _ in history] + \
[{"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation=conversation,
tokenize=True,
add_generation_prompt=True,
return_tensors='pt').to(device)
output_ids = model.generate(input_ids=input_ids, max_new_tokens=max_new_tokens,
do_sample=True, pad_token_id=tokenizer.pad_token_id)
response = tokenizer.batch_decode(output_ids.detach().cpu().numpy(), skip_special_tokens=True)
response_text = response[0]
yield history + [(message, response_text)]
def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
input_token_length = len(tokenizer.encode(message)) + sum(len(tokenizer.encode(msg)) for msg, _ in chat_history)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.")
with gr.Blocks(css="./styles/style.css") as demo: # Link to CSS file
gr.Markdown(DESCRIPTION)
gr.Button("Duplicate Space for private use", elem_id="duplicate-button")
with gr.Group():
chatbot = gr.Chatbot(label="Chat with Healthcare AI")
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder="Ask me anything about Healthcare and Wellness...",
scale=10,
)
submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button('π Retry', variant='secondary')
undo_button = gr.Button('β©οΈ Undo', variant='secondary')
clear_button = gr.Button('ποΈ Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label="βοΈ Advanced options", open=False):
system_prompt = gr.Textbox(
label="System prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=5,
interactive=False,
)
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.1,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
)
top_k = gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=10,
)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
).success(
fn=generate,
inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k],
outputs=chatbot,
)
submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
).success(
fn=generate,
inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k],
outputs=chatbot,
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
).then(
fn=generate,
inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k],
outputs=chatbot,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
)
clear_button.click(
fn=lambda: ([], ""),
outputs=[chatbot, saved_input],
)
demo.queue(max_size=32).launch(share=False)
|