File size: 7,036 Bytes
36eb6b1
2edc4bc
ff96349
36eb6b1
 
 
233f32d
36eb6b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233f32d
 
ff96349
233f32d
 
 
 
 
ff96349
36eb6b1
233f32d
 
 
 
 
ff96349
233f32d
 
 
ff96349
233f32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff96349
233f32d
 
36eb6b1
 
 
 
 
 
 
 
 
 
 
 
 
2edc4bc
ff96349
36eb6b1
233f32d
ff96349
233f32d
36eb6b1
233f32d
ff96349
2edc4bc
 
ff96349
2edc4bc
233f32d
 
 
ff96349
233f32d
 
ff96349
 
233f32d
ff96349
233f32d
ff96349
233f32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff96349
233f32d
 
 
ff96349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233f32d
 
 
 
 
 
 
 
 
 
 
 
ff96349
233f32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff96349
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

import gradio as gr
from typing import Iterator, List, Tuple
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftConfig, PeftModel

base_model = "mistralai/Mistral-7B-Instruct-v0.2"
adapter = "GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2"

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
    base_model,
    add_bos_token=True,
    trust_remote_code=True,
    padding_side='left'
)

# Create peft model using base_model and finetuned adapter
config = PeftConfig.from_pretrained(adapter)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
                                             load_in_4bit=True,
                                             device_map='auto',
                                             torch_dtype='auto')
model = PeftModel.from_pretrained(model, adapter)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()

DEFAULT_SYSTEM_PROMPT = "You are Phoenix AI Healthcare. You are professional, you are polite, give only truthful information and are based on the Mistral-7B model from Mistral AI about Healtcare and Wellness. You can communicate in different languages equally well."

MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 4000

DESCRIPTION = """
# Simple Healthcare Chatbot
### Powered by Mistral-7B with Healthcare Fine-Tuning
"""

def clear_and_save_textbox(message: str) -> tuple[str, str]:
    return "", message

def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]:
    history.append((message, ""))
    return history

def delete_prev_fn(history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
    try:
        message, _ = history.pop()
    except IndexError:
        message = ""
    return history, message or ""

def generate(
    message: str,
    history_with_input: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
) -> Iterator[list[tuple[str, str]]]:
    if max_new_tokens > MAX_MAX_NEW_TOKENS:
        raise ValueError("Max new tokens exceeded")

    history = history_with_input[:-1]
    conversation = [{"role": "system", "content": system_prompt}] + \
                   [{"role": "user", "content": user_input} for user_input, _ in history] + \
                   [{"role": "user", "content": message}]
    input_ids = tokenizer.apply_chat_template(conversation=conversation,
                                              tokenize=True,
                                              add_generation_prompt=True,
                                              return_tensors='pt').to(device)
    output_ids = model.generate(input_ids=input_ids, max_new_tokens=max_new_tokens,
                                do_sample=True, pad_token_id=tokenizer.pad_token_id)
    response = tokenizer.batch_decode(output_ids.detach().cpu().numpy(), skip_special_tokens=True)
    response_text = response[0]

    yield history + [(message, response_text)]

def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
    input_token_length = len(tokenizer.encode(message)) + sum(len(tokenizer.encode(msg)) for msg, _ in chat_history)
    if input_token_length > MAX_INPUT_TOKEN_LENGTH:
        raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.")

with gr.Blocks(css="./styles/style.css") as demo:  # Link to CSS file
    gr.Markdown(DESCRIPTION)
    gr.Button("Duplicate Space for private use", elem_id="duplicate-button")

    with gr.Group():
        chatbot = gr.Chatbot(label="Chat with Healthcare AI")
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder="Ask me anything about Healthcare and Wellness...",
                scale=10,
            )
            submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0)

    with gr.Row():
        retry_button = gr.Button('πŸ”„ Retry', variant='secondary')
        undo_button = gr.Button('↩️ Undo', variant='secondary')
        clear_button = gr.Button('πŸ—‘οΈ Clear', variant='secondary')

    saved_input = gr.State()

    with gr.Accordion(label="βš™οΈ Advanced options", open=False):
        system_prompt = gr.Textbox(
            label="System prompt",
            value=DEFAULT_SYSTEM_PROMPT,
            lines=5,
            interactive=False,
        )
        max_new_tokens = gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        )
        temperature = gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.1,
        )
        top_p = gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        )
        top_k = gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=10,
        )

    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
    ).success(
        fn=generate,
        inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k],
        outputs=chatbot,
    )

    submit_button.click(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
    ).success(
        fn=generate,
        inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k],
        outputs=chatbot,
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
    ).then(
        fn=generate,
        inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k],
        outputs=chatbot,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
    )

    clear_button.click(
        fn=lambda: ([], ""),
        outputs=[chatbot, saved_input],
    )

demo.queue(max_size=32).launch(share=False)