Spaces:
Sleeping
Sleeping
File size: 8,544 Bytes
233f32d 2edc4bc 233f32d 2edc4bc 233f32d 2edc4bc 233f32d 2edc4bc 233f32d 2edc4bc 233f32d 2edc4bc 233f32d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import os
from typing import Iterator
import gradio as gr
from src.model import run
HF_PUBLIC = os.environ.get("HF_PUBLIC", False)
DEFAULT_SYSTEM_PROMPT = "You are Phoenix AI Healthcare. You are professional, you are polite, give only truthful information and are based on the Mistral-7B model from Mistral AI about Healtcare and Wellness. You can communicate in different languages equally well."
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 4000
DESCRIPTION = """
# [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
"""
def clear_and_save_textbox(message: str) -> tuple[str, str]:
"""
Clear the textbox and save the input to a state variable.
:param message: The input message.
:return: A tuple of the empty string and the input message.
"""
return "", message
def display_input(
message: str, history: list[tuple[str, str]]
) -> list[tuple[str, str]]:
"""
Display the input message in the chat history.
:param message: The input message.
:param history: The chat history.
:return: The chat history with the input message appended.
"""
history.append((message, ""))
return history
def delete_prev_fn(
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
"""
Delete the previous message from the chat history.
:param history: The chat history.
:return: The chat history with the last message removed
and the removed message.
"""
try:
message, _ = history.pop()
except IndexError:
message = ""
return history, message or ""
def generate(
message: str,
history_with_input: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int,
temperature: float,
top_p: float,
top_k: int,
) -> Iterator[list[tuple[str, str]]]:
"""
Generate a response to the input message.
:param message: The input message.
:param history_with_input: The chat history with
the input message appended.
:param system_prompt: The system prompt.
:param max_new_tokens: The maximum number of tokens to generate.
:param temperature: The temperature.
:param top_p: The top-p (nucleus sampling) probability.
:param top_k: The top-k probability.
:return: An iterator over the chat history with
the generated response appended.
"""
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
generator = run(
message, history,
system_prompt, max_new_tokens, temperature, top_p, top_k
)
try:
first_response = next(generator)
yield history + [(message, first_response)]
except StopIteration:
yield history + [(message, "")]
for response in generator:
yield history + [(message, response)]
def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
"""
Process an example.
:param message: The input message.
:return: A tuple of the empty string and the chat history with the \
generated response appended.
"""
generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
for x in generator:
pass
return "", x
def check_input_token_length(
message: str, chat_history: list[tuple[str, str]], system_prompt: str
) -> None:
"""
Check that the accumulated input is not too long.
:param message: The input message.
:param chat_history: The chat history.
:param system_prompt: The system prompt.
:return: None.
"""
input_token_length = len(message) + len(chat_history)
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
raise gr.Error(
f"The accumulated input is too long \
({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}).\
Clear your chat history and try again."
)
with gr.Blocks(css="./styles/style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use", elem_id="duplicate-button"
)
with gr.Group():
chatbot = gr.Chatbot(label="Playground")
with gr.Row():
textbox = gr.Textbox(
container=False,
show_label=False,
placeholder="Greetings, with what Healthcare/Wellness topic can I help you with today?",
scale=10,
)
submit_button = gr.Button("Submit", variant="primary",
scale=1, min_width=0)
with gr.Row():
retry_button = gr.Button('π Retry', variant='secondary')
undo_button = gr.Button('β©οΈ Undo', variant='secondary')
clear_button = gr.Button('ποΈ Clear', variant='secondary')
saved_input = gr.State()
with gr.Accordion(label="βοΈ Advanced options", open=False):
system_prompt = gr.Textbox(
label="System prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=5,
interactive=False,
)
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.1,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
)
top_k = gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=10,
)
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
).success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
button_event_preprocess = (
submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
)
.then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
)
.then(
fn=check_input_token_length,
inputs=[saved_input, chatbot, system_prompt],
api_name=False,
queue=False,
)
.success(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
fn=generate,
inputs=[
saved_input,
chatbot,
system_prompt,
max_new_tokens,
temperature,
top_p,
top_k,
],
outputs=chatbot,
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ""),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue(max_size=32).launch(share=HF_PUBLIC, show_api=False) |