import gradio as gr from typing import Iterator, List, Tuple import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftConfig, PeftModel base_model = "mistralai/Mistral-7B-Instruct-v0.2" adapter = "GRMenon/mental-health-mistral-7b-instructv0.2-finetuned-V2" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( base_model, add_bos_token=True, trust_remote_code=True, padding_side='left' ) # Create peft model using base_model and finetuned adapter config = PeftConfig.from_pretrained(adapter) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_4bit=True, device_map='auto', torch_dtype='auto') model = PeftModel.from_pretrained(model, adapter) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) model.eval() DEFAULT_SYSTEM_PROMPT = "You are Phoenix AI Healthcare. You are professional, you are polite, give only truthful information and are based on the Mistral-7B model from Mistral AI about Healtcare and Wellness. You can communicate in different languages equally well." MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 256 MAX_INPUT_TOKEN_LENGTH = 4000 DESCRIPTION = """ # Simple Healthcare Chatbot ### Powered by Mistral-7B with Healthcare Fine-Tuning """ def clear_and_save_textbox(message: str) -> tuple[str, str]: return "", message def display_input(message: str, history: list[tuple[str, str]]) -> list[tuple[str, str]]: history.append((message, "")) return history def delete_prev_fn(history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]: try: message, _ = history.pop() except IndexError: message = "" return history, message or "" def generate( message: str, history_with_input: list[tuple[str, str]], system_prompt: str, max_new_tokens: int, temperature: float, top_p: float, top_k: int, ) -> Iterator[list[tuple[str, str]]]: if max_new_tokens > MAX_MAX_NEW_TOKENS: raise ValueError("Max new tokens exceeded") history = history_with_input[:-1] conversation = [{"role": "system", "content": system_prompt}] + \ [{"role": "user", "content": user_input} for user_input, _ in history] + \ [{"role": "user", "content": message}] input_ids = tokenizer.apply_chat_template(conversation=conversation, tokenize=True, add_generation_prompt=True, return_tensors='pt').to(device) output_ids = model.generate(input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True, pad_token_id=tokenizer.pad_token_id) response = tokenizer.batch_decode(output_ids.detach().cpu().numpy(), skip_special_tokens=True) response_text = response[0] yield history + [(message, response_text)] def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None: input_token_length = len(tokenizer.encode(message)) + sum(len(tokenizer.encode(msg)) for msg, _ in chat_history) if input_token_length > MAX_INPUT_TOKEN_LENGTH: raise gr.Error(f"The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.") with gr.Blocks(css="./styles/style.css") as demo: # Link to CSS file gr.Markdown(DESCRIPTION) gr.Button("Duplicate Space for private use", elem_id="duplicate-button") with gr.Group(): chatbot = gr.Chatbot(label="Chat with Healthcare AI") with gr.Row(): textbox = gr.Textbox( container=False, show_label=False, placeholder="Ask me anything about Healthcare and Wellness...", scale=10, ) submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0) with gr.Row(): retry_button = gr.Button('🔄 Retry', variant='secondary') undo_button = gr.Button('â†Šī¸ Undo', variant='secondary') clear_button = gr.Button('đŸ—‘ī¸ Clear', variant='secondary') saved_input = gr.State() with gr.Accordion(label="âš™ī¸ Advanced options", open=False): system_prompt = gr.Textbox( label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False, ) max_new_tokens = gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ) temperature = gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1, ) top_p = gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ) top_k = gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=10, ) textbox.submit( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], ).success( fn=generate, inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k], outputs=chatbot, ) submit_button.click( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], ).success( fn=generate, inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k], outputs=chatbot, ) retry_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, ).then( fn=generate, inputs=[saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k], outputs=chatbot, ) undo_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], ).then( fn=lambda x: x, inputs=[saved_input], outputs=textbox, ) clear_button.click( fn=lambda: ([], ""), outputs=[chatbot, saved_input], ) demo.queue(max_size=32).launch(share=False)