import os from typing import Iterator import gradio as gr from src.model import run HF_PUBLIC = os.environ.get("HF_PUBLIC", False) DEFAULT_SYSTEM_PROMPT = "You are Phoenix AI Healthcare. You are professional, you are polite, give only truthful information and are based on the Mistral-7B model from Mistral AI about Healtcare and Wellness. You can communicate in different languages equally well." MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 256 MAX_INPUT_TOKEN_LENGTH = 4000 DESCRIPTION = """ # [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) """ def clear_and_save_textbox(message: str) -> tuple[str, str]: """ Clear the textbox and save the input to a state variable. :param message: The input message. :return: A tuple of the empty string and the input message. """ return "", message def display_input( message: str, history: list[tuple[str, str]] ) -> list[tuple[str, str]]: """ Display the input message in the chat history. :param message: The input message. :param history: The chat history. :return: The chat history with the input message appended. """ history.append((message, "")) return history def delete_prev_fn( history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]: """ Delete the previous message from the chat history. :param history: The chat history. :return: The chat history with the last message removed and the removed message. """ try: message, _ = history.pop() except IndexError: message = "" return history, message or "" def generate( message: str, history_with_input: list[tuple[str, str]], system_prompt: str, max_new_tokens: int, temperature: float, top_p: float, top_k: int, ) -> Iterator[list[tuple[str, str]]]: """ Generate a response to the input message. :param message: The input message. :param history_with_input: The chat history with the input message appended. :param system_prompt: The system prompt. :param max_new_tokens: The maximum number of tokens to generate. :param temperature: The temperature. :param top_p: The top-p (nucleus sampling) probability. :param top_k: The top-k probability. :return: An iterator over the chat history with the generated response appended. """ if max_new_tokens > MAX_MAX_NEW_TOKENS: raise ValueError history = history_with_input[:-1] generator = run( message, history, system_prompt, max_new_tokens, temperature, top_p, top_k ) try: first_response = next(generator) yield history + [(message, first_response)] except StopIteration: yield history + [(message, "")] for response in generator: yield history + [(message, response)] def process_example(message: str) -> tuple[str, list[tuple[str, str]]]: """ Process an example. :param message: The input message. :return: A tuple of the empty string and the chat history with the \ generated response appended. """ generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50) for x in generator: pass return "", x def check_input_token_length( message: str, chat_history: list[tuple[str, str]], system_prompt: str ) -> None: """ Check that the accumulated input is not too long. :param message: The input message. :param chat_history: The chat history. :param system_prompt: The system prompt. :return: None. """ input_token_length = len(message) + len(chat_history) if input_token_length > MAX_INPUT_TOKEN_LENGTH: raise gr.Error( f"The accumulated input is too long \ ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}).\ Clear your chat history and try again." ) with gr.Blocks(css="./styles/style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button" ) with gr.Group(): chatbot = gr.Chatbot(label="Playground") with gr.Row(): textbox = gr.Textbox( container=False, show_label=False, placeholder="Greetings, with what Healthcare/Wellness topic can I help you with today?", scale=10, ) submit_button = gr.Button("Submit", variant="primary", scale=1, min_width=0) with gr.Row(): retry_button = gr.Button('🔄 Retry', variant='secondary') undo_button = gr.Button('â†Šī¸ Undo', variant='secondary') clear_button = gr.Button('đŸ—‘ī¸ Clear', variant='secondary') saved_input = gr.State() with gr.Accordion(label="âš™ī¸ Advanced options", open=False): system_prompt = gr.Textbox( label="System prompt", value=DEFAULT_SYSTEM_PROMPT, lines=5, interactive=False, ) max_new_tokens = gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ) temperature = gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1, ) top_p = gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ) top_k = gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=10, ) textbox.submit( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ).success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) button_event_preprocess = ( submit_button.click( fn=clear_and_save_textbox, inputs=textbox, outputs=[textbox, saved_input], api_name=False, queue=False, ) .then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ) .then( fn=check_input_token_length, inputs=[saved_input, chatbot, system_prompt], api_name=False, queue=False, ) .success( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) ) retry_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=display_input, inputs=[saved_input, chatbot], outputs=chatbot, api_name=False, queue=False, ).then( fn=generate, inputs=[ saved_input, chatbot, system_prompt, max_new_tokens, temperature, top_p, top_k, ], outputs=chatbot, api_name=False, ) undo_button.click( fn=delete_prev_fn, inputs=chatbot, outputs=[chatbot, saved_input], api_name=False, queue=False, ).then( fn=lambda x: x, inputs=[saved_input], outputs=textbox, api_name=False, queue=False, ) clear_button.click( fn=lambda: ([], ""), outputs=[chatbot, saved_input], queue=False, api_name=False, ) demo.queue(max_size=32).launch(share=HF_PUBLIC, show_api=False)