File size: 2,604 Bytes
3d0f7c4
 
 
 
abfd83b
 
5d4ec37
3d0f7c4
5d4ec37
3d0f7c4
 
 
 
 
 
5d4ec37
 
3d0f7c4
 
 
 
 
ddcad02
3d0f7c4
 
 
 
 
ddcad02
 
 
3d0f7c4
ddcad02
 
3d0f7c4
 
 
 
ddcad02
3d0f7c4
 
 
 
 
 
791b656
ddcad02
 
 
 
791b656
 
3d0f7c4
 
 
 
 
 
ddcad02
3d0f7c4
 
 
 
 
 
 
ddcad02
 
3d0f7c4
 
 
 
ddcad02
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
from dotenv import load_dotenv

load_dotenv()

api_key = os.getenv("api_key")
# App title and description
st.title("I am Your GrowBuddy 🌱")
st.write("Let me help you start gardening. Let's grow together!")

def load_model():
    try:
        tokenizer = AutoTokenizer.from_pretrained("KhunPop/Gardening",  use_auth_token=api_key)
        model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it",  use_auth_token=api_key)
        return tokenizer, model
    except Exception as e:
        st.error(f"Failed to load model: {e}")
        return None, None

# Load model and tokenizer
tokenizer, model = load_model()

if not tokenizer or not model:
    st.stop()

# Default to CPU, or use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# Initialize session state messages if not already initialized
if "messages" not in st.session_state:
    st.session_state.messages = [
        {"role": "assistant", "content": "Hello there! How can I help you with gardening today?"}
    ]

# Display the conversation history
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def generate_response(prompt):
    try:
        # Tokenize the input prompt
        inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device)

        # Ensure the model is generating properly (without a target)
        outputs = model.generate(inputs["input_ids"], max_new_tokens=150, temperature=0.7, do_sample=True)

        # Decode the output to text
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return response
    except Exception as e:
        st.error(f"Error during text generation: {e}")
        return "Sorry, I couldn't process your request."

# User input field for asking questions
user_input = st.chat_input("Type your gardening question here:")

if user_input:
    # Display user message
    with st.chat_message("user"):
        st.write(user_input)

    # Generate and display assistant's response
    with st.chat_message("assistant"):
        with st.spinner("I'm gonna tell you..."):
            response = generate_response(user_input)
            st.write(response)

    # Update session state with the new conversation
    st.session_state.messages.append({"role": "user", "content": user_input})
    st.session_state.messages.append({"role": "assistant", "content": response})